3 resultados para Fronteira Dirichlet

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Supreme Court’s decision in Shelby County has severely limited the power of the Voting Rights Act. I argue that Congressional attempts to pass a new coverage formula are unlikely to gain the necessary Republican support. Instead, I propose a new strategy that takes a “carrot and stick” approach. As the stick, I suggest amending Section 3 to eliminate the need to prove that discrimination was intentional. For the carrot, I envision a competitive grant program similar to the highly successful Race to the Top education grants. I argue that this plan could pass the currently divided Congress.

Without Congressional action, Section 2 is more important than ever before. A successful Section 2 suit requires evidence that voting in the jurisdiction is racially polarized. Accurately and objectively assessing the level of polarization has been and continues to be a challenge for experts. Existing ecological inference methods require estimating polarization levels in individual elections. This is a problem because the Courts want to see a history of polarization across elections.

I propose a new 2-step method to estimate racially polarized voting in a multi-election context. The procedure builds upon the Rosen, Jiang, King, and Tanner (2001) multinomial-Dirichlet model. After obtaining election-specific estimates, I suggest regressing those results on election-specific variables, namely candidate quality, incumbency, and ethnicity of the minority candidate of choice. This allows researchers to estimate the baseline level of support for candidates of choice and test whether the ethnicity of the candidates affected how voters cast their ballots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the Royden compactification R* of a Riemannian n-manifold R, Γ = R*\R its Royden boundary, Δ its harmonic boundary and the elliptic differential equation Δu = Pu, P ≥ 0 on R. A regular Borel measure mP can be constructed on Γ with support equal to the closure of ΔP = {q ϵ Δ : q has a neighborhood U in R* with UʃᴖRP ˂ ∞ }. Every enegy-finite solution to u (i.e. E(u) = D(u) + ʃRu2P ˂ ∞, where D(u) is the Dirichlet integral of u) can be represented by u(z) = ʃΓu(q)K(z,q)dmP(q) where K(z,q) is a continuous function on Rx Γ . A P~E-function is a nonnegative solution which is the infimum of a downward directed family of energy-finite solutions. A nonzero P~E-function is called P~E-minimal if it is a constant multiple of every nonzero P~E-function dominated by it. THEOREM. There exists a P~E-minimal function if and only if there exists a point in q ϵ Γ such that mP(q) > 0. THEOREM. For q ϵ ΔP , mP(q) > 0 if and only if m0(q) > 0 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.