40 resultados para DNA molecule

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. Since their discovery full-length, RAG1 and RAG2 have been difficult to purify, and core derivatives are shown to be most active when purified from adherent 293-T cells. However, the protein yield from adherent 293-T cells is limited. Here we develop a human suspension cell purification and change the expression vector to boost RAG production 6-fold. We use these purified RAG proteins to investigate V(D)J recombination on a mechanistic single molecule level. As a result, we are able to measure the binding statistics (dwell times and binding energies) of the initial RAG binding events with or without its co-factor high mobility group box protein 1 (HMGB1), and to characterize synapse formation at the single-molecule level yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage upon forming the synapse. We then go on to investigate HMGB1 further by measuring it compact single DNA molecules. We observed concentration dependent DNA compaction, differential DNA compaction depending on the divalent cation type, and found that at a particular HMGB1 concentration the percentage of DNA compacted is conserved across DNA lengths. Lastly, we investigate another HMGB protein called TFAM, which is essential for packaging the mitochondrial genome. We present crystal structures of TFAM bound to the heavy strand promoter 1 (HSP1) and to nonspecific DNA. We show TFAM dimerization is dispensable for DNA bending and transcriptional activation, but is required for mtDNA compaction. We propose that TFAM dimerization enhances mtDNA compaction by promoting looping of mtDNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA recognition is an essential biological process responsible for the regulation of cellular functions including protein synthesis and cell division and is implicated in the mechanism of action of some anticancer drugs. Studies directed towards defining the elements responsible for sequence specific DNA recognition through the study of the interactions of synthetic organic ligands with DNA are described.

DNA recognition by poly-N-methylpyrrolecarboxamides was studied by the synthesis and characterization of a series of molecules where the number of contiguous N-methylpyrrolecarboxamide units was increased from 2 to 9. The effect of this incremental change in structure on DNA recognition has been investigated at base pair resolution using affinity cleaving and MPE•Fe(II) footprinting techniques. These studies led to a quantitative relationship between the number of amides in the molecule and the DNA binding site size. This relationship is called the n + 1 rule and it states that a poly-N methylpyrrolecarboxamide molecule with n amides will bind n + 1 base pairs of DNA. This rule is consistent with a model where the carboxamides of these compounds form three center bridging hydrogen bonds between adjacent base pairs on opposite strands of the helix. The poly-N methylpyrrolecarboxamide recognition element was found to preferentially bind poly dA•poly dT stretches; however, both binding site selection and orientation were found to be affected by flanking sequences. Cleavage of large DNA is also described.

One approach towards the design of molecules that bind large sequences of double helical DNA sequence specifically is to couple DNA binding subunits of similar or diverse base pair specificity. Bis-EDTA-distamycin-fumaramide (BEDF) is an octaamide dimer of two tri-N methylpyrrolecarboxamide subunits linked by fumaramide. DNA recognition by BEDF was compared to P7E, an octaamide molecule containing seven consecutive pyrroles. These two compounds were found to recognize the same sites on pBR322 with approximately the same affinities demonstrating that fumaramide is an effective linking element for Nmethylpyrrolecarboxamide recognition subunits. Further studies involved the synthesis and characterization of a trimer of tetra-N-methylpyrrolecarboxamide subunits linked by β-alanine ((P4)_(3)E). This trimerization produced a molecule which is capable of recognizing 16 base pairs of A•T DNA, more than a turn and a half of the DNA helix.

DNA footprinting is a powerful direct method for determining the binding sites of proteins and small molecules on heterogeneous DNA. It was found that attachment of EDTA•Fe(II) to spermine creates a molecule, SE•Fe(II), which binds and cleaves DNA sequence neutrally. This lack of specificity provides evidence that at the nucleotide level polyamines recognize heterogeneous DNA independent of sequence and allows SE•Fe(II) to be used as a footprinting reagent. SE•Fe(II) was compared with two other small molecule footprinting reagents, EDTA•Fe(II) and MPE•Fe(II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.

In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.

In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.

One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.

The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Chapter 1.....A physicochemical study of the DNA molecules from the three bacteriophages, N1, N5, and N6, which infect the bacterium, M. lysodeikticus, has been made. The molecular weights, as measured by both electron microscopy and sedimentation velocity, are 23 x 106 for N5 DNA and 31 x 106 for N1 and N6 DNA's. All three DNA's are capable of thermally reversible cyclization. N1 and N6 DNA's have identical or very similar base sequences as judged by membrane filter hybridization and by electron microscope heteroduplex studies. They have identical or similar cohesive ends. These results are in accord with the close biological relation between N1 and N6 phages. N5 DNA is not closely related to N1 or N6 DNA. The denaturation Tm of all three DNA's is the same and corresponds to a (GC) content of 70%. However, the buoyant densities in CsCl of Nl and N6 DNA's are lower than expected, corresponding to predicted GC contents of 64 and 67%. The buoyant densities in Cs2SO4 are also somewhat anomalous. The buoyant density anomalies are probably due to the presence of odd bases. However, direct base composition analysis of N1 DNA by anion exchange chromatography confirms a GC content of 70%, and, in the elution system used, no peaks due to odd bases are present.

Chapter 2.....A covalently closed circular DNA form has been observed as an intracellular form during both productive and abortive infection processes in M. lysodeikticus. This species has been isolated by the method of CsC1-ethidium bromide centrifugation and examined with an electron microscope.

Chapter 3.....A minute circular DNA has been discovered as a homogeneous population in M. lysodeikticus. Its length and molecular weight as determined by electron microscopy are 0.445 μ and 0.88 x 106 daltons respectively. There is about one minicircle per bacterium.

Chapter 4.....Several strains of E. coli 15 harbor a prophage. Viral growth can be induced by exposing the host to mitomycin C or to uv irradiation. The coliphage 15 particles from E. coli 15 and E, coli 15 T- appear as normal phage with head and tail structure; the particles from E. coli 15 TAU are tailless. The complete particles exert a colicinogenic activity on E.coli 15 and 15 T-, the tailless particles do not. No host for a productive viral infection has been found and the phage may be defective. The properties of the DNA of the virus have been studied, mainly by electron microscopy. After induction but before lysis, a closed circular DNA with a contour length of about 11.9 μ is found in the bacterium; the mature phage DNA is a linear duplex and 7.5% longer than the intracellular circular form. This suggests the hypothesis that the mature phage DNA is terminally repetitious and circularly permuted. The hypothesis was confirmed by observing that denaturation and renaturation of the mature phage DNA produce circular duplexes with two single-stranded branches corresponding to the terminal repetition. The contour length of the mature phage DNA was measured relative to φX RFII DNA and λ DNA; the calculated molecular weight is 27 x 106. The length of the single-stranded terminal repetition was compared to the length of φX 174 DNA under conditions where single-stranded DNA is seen in an extended form in electron micrographs. The length of the terminal repetition is found to be 7.4% of the length of the nonrepetitious part of the coliphage 15 DNA. The number of base pairs in the terminal repetition is variable in different molecules, with a fractional standard deviation of 0.18 of the average number in the terminal repetition. A new phenomenon termed "branch migration" has been discovered in renatured circular molecules; it results in forked branches, with two emerging single strands, at the position of the terminal repetition. The distribution of branch separations between the two terminal repetitions in the population of renatured circular molecules was studied. The observed distribution suggests that there is an excluded volume effect in the renaturation of a population of circularly permuted molecules such that strands with close beginning points preferentially renature with each other. This selective renaturation and the phenomenon of branch migration both affect the distribution of branch separations; the observed distribution does not contradict the hypothesis of a random distribution of beginning points around the chromosome.

Chapter 5....Some physicochemical studies on the minicircular DNA species in E. coli 15 (0.670 μ, 1.47 x 106 daltons) have been made. Electron microscopic observations showed multimeric forms of the minicircle which amount to 5% of total DNA species and also showed presumably replicating forms of the minicircle. A renaturation kinetic study showed that the minicircle is a unique DNA species in its size and base sequence. A study on the minicircle replication has been made under condition in which host DNA synthesis is synchronized. Despite experimental uncertainties involved, it seems that the minicircle replication is random and the number of the minicircles increases continuously throughout a generation of the host, regardless of host DNA synchronization.

Part II

The flow dichroism of dilute DNA solutions (A260≈0.1) has been studied in a Couette-type apparatus with the outer cylinder rotating and with the light path parallel to the cylinder axis. Shear gradients in the range of 5-160 sec.-1 were studied. The DNA samples were whole, "half," and "quarter" molecules of T4 bacteriophage DNA, and linear and circular λb2b5c DNA. For the linear molecules, the fractional flow dichroism is a linear function of molecular weight. The dichroism for linear A DNA is about 1.8 that of the circular molecule. For a given DNA, the dichroism is an approximately linear function of shear gradient, but with a slight upward curvature at low values of G, and some trend toward saturation at larger values of G. The fractional dichroism increases as the supporting electrolyte concentration decreases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.

The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.

A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.

II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide-directed triple helix formation is one of the most versatile methods for the sequence specific recognition of double helical DNA. Chapter 2 describes affinity cleaving experiments carried out to assess the recognition potential for purine-rich oligonucleotides via the formation of triple helices. Purine-rich oligodeoxyribonucleotides were shown to bind specifically to purine tracts of double helical DNA in the major groove antiparallel to the purine strand of the duplex. Specificity was derived from the formation of reverse Hoogsteen G•GC, A•AT and T•AT triplets and binding was limited to mostly purine tracts. This triple helical structure was stabilized by multivalent cations, destabilized by high concentrations of monovalent cations and was insensitive to pH. A single mismatched base triplet was shown to destabilize a 15 mer triple helix by 1.0 kcal/mole at 25°C. In addition, stability appeared to be correlated to the number of G•GC triplets formed in the triple helix. This structure provides an additional framework as a basis for the design of new sequence specific DNA binding molecules.

In work described in Chapter 3, the triplet specificities and required strand orientations of two classes of DNA triple helices were combined to target double helical sequences containing all four base pairs by alternate strand triple helix formation. This allowed for the use of oligonucleotides containing only natural 3'-5' phosphodiester linkages to simultaneously bind both strands of double helical DNA in the major groove. The stabilities and structures of these alternate strand triple helices depended on whether the binding site sequence was 5'-(purine)_m (pyrimidine)_n-3' or 5'- (pyrimidine)_m (purine)_n-3'.

In Chapter 4, the ability of oligonucleotide-cerium(III) chelates to direct the transesterfication of RNA was investigated. Procedures were developed for the modification of DNA and RNA oligonucleotides with a hexadentate Schiff-base macrocyclic cerium(III) complex. In addition, oligoribonucleotides modified by covalent attachment of the metal complex through two different linker structures were prepared. The ability of these structures to direct transesterification to specific RNA phosphodiesters was assessed by gel electrophoresis. No reproducible cleavage of the RNA strand consistent with transesterification could be detected in any of these experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviors of six new cyclophane receptors for organic guest molecules in aqueous media are reported. These new hosts are modifications of more basic parent structures, and the main goal of their examination has been to determine how the modifications affect host selectivity for cationic guests. In particular, we have been interested in determining how additional non-covalent binding interactions can complement the cation-π interactions active in the parent systems. Three types of modifications were made to these systems. Firstly, neutral methoxy and bromine substituents were added to produce four of the six new macrocycles. Secondly, two additional aromatic rings (relative to the parent host) capable of making cation-π interactions with charged guest species were appended. Thirdly, a negatively charged carboxyl group was attached to produce a cavity in which electrostatic interactions should enhance cationic guest binding. ^1H-NMR and circular dichroic techniques were employed to determine the binding affinities of a wide variety of organic guests for the parent and modified structures in aqueous media.

Bromination of the parent host greatly enhances its binding in a general fashion, primarily as the result of hydrophobic interactions. The addition of methoxy groups does not enhance binding, apparently as a result of a collapse of the hosts into a conformation that is not suitable for binding. The appendage of extra aromatic rings enhances the binding of positively charged guests, most likely in response to more complete encapsulation of guest species. The addition of a negatively charged carboxylate enhances the binding to only selective groups of cationic guests. AM1 calculations of the electrostatic potentials of several guests molecules suggests that the enhancements seen with the modified receptor compared to the parent are most likely the result of close contact between regions of highest potential on the guest and the appended carboxylate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have applied the Schwinger Multichannel Method(SMC) to the study of electronically inelastic, low energy electron-molecule collisions. The focus of these studies has been the assessment of the importance of multichannel coupling to the dynamics of these excitation processes. It has transpired that the promising quality of results realized in early SMC work on such inelastic scattering processes has been far more difficult to obtain in these more sophisticated studies.

We have attempted to understand the sources of instability of the SMC method which are evident in these multichannel studies. Particular instances of such instability have been considered in detail, which indicate that linear dependence, failure of the separable potential approximation, and difficulties in converging matrix elements involving recorrelation or Q-space terms all conspire to complicate application of the SMC method to these studies. A method involving singular value decomposition(SVD) has been developed to, if not resolve these problems, at least mitigate their deleterious effects on the computation of electronically inelastic cross sections.

In conjunction with this SVD procedure, the SMC method has been applied to the study of the H_2 , H_2O, and N_2 molecules. Rydberg excitations of the first two molecules were found to be most sensitive to multichannel coupling near threshold. The (3σ_g → 1π_g ) and (1π_u → 1π_g) valence excitations of the N_2 molecule were found to be strongly influenced by the choice of channel coupling scheme at all collision energies considered in these studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes research pursued in two areas, both involving the design and synthesis of sequence specific DNA-cleaving proteins. The first involves the use of sequence-specific DNA-cleaving metalloproteins to probe the structure of a protein-DNA complex, and the second seeks to develop cleaving moieties capable of DNA cleavage through the generation of a non-diffusible oxidant under physiological conditions.

Chapter One provides a brief review of the literature concerning sequence-specific DNA-binding proteins. Chapter Two summarizes the results of affinity cleaving experiments using leucine zipper-basic region (bZip) DNA-binding proteins. Specifically, the NH_2-terminal locations of a dimer containing the DNA binding domain of the yeast transcriptional activator GCN4 were mapped on the binding sites 5'-CTGACTAAT-3' and 5'ATGACTCTT- 3' using affinity cleaving. Analysis of the DNA cleavage patterns from Fe•EDTA-GCN4(222-281) and (226-281) dimers reveals that the NH_2-termini are in the major groove nine to ten base pairs apart and symmetrically displaced four to five base pairs from the central C of the recognition site. These data are consistent with structural models put forward for this class of DNA binding proteins. The results of these experiments are evaluated in light of the recently published crystal structure for the GCN4-DNA complex. Preliminary investigations of affinity cleaving proteins based on the DNA-binding domains of the bZip proteins Jun and Fos are also described.

Chapter Three describes experiments demonstrating the simultaneous binding of GCN4(226-281) and 1-Methylimidazole-2-carboxamide-netropsin (2-ImN), a designed synthetic peptide which binds in the minor groove of DNA at 5'-TGACT-3' sites as an antiparallel, side-by-side dimer. Through the use of Fe•EDTA-GCN4(226-281) as a sequence-specific footprinting agent, it is shown that the dimeric protein GCN4(226-281) and the dimeric peptide 2- ImN can simultaneously occupy their common binding site in the major and minor grooves of DNA, respectively. The association constants for 2-ImN in the presence and in the absence of Fe•EDTA-GCN4(226-281) are found to be similar, suggesting that the binding of the two dimers is not cooperative.

Chapter Four describes the synthesis and characterization of PBA-β-OH-His- Hin(139-190), a hybrid protein containing the DNA-binding domain of Hin recombinase and the putative iron-binding and oxygen-activating domain of the antitumor antibiotic bleomycin. This 54-residue protein, comprising residues 139-190 of Hin recombinase with the dipeptide pyrimidoblamic acid-β-hydroxy-L-histidine (PBA-β-OH-His) at the NH2 terminus, was synthesized by solid phase methods. PBA-β-OH-His-Hin(139- 190) binds specifically to DNA at four distinct Hin binding sites with affinities comparable to those of the unmodified Hin(139-190). In the presence of dithiothreitol (DTT), Fe•PB-β-OH-His-Hin(139-190) cleaves DNA with specificity remarkably similar to that of Fe•EDTA-Hin(139-190), although with lower efficiency. Analysis of the cleavage pattern suggests that DNA cleavage is mediated through a diffusible species, in contrast with cleavage by bleomycin, which occurs through a non-diffusible oxidant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.

The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.

The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.

The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast chromosomes contain sequences called ARSs which function as origins of replication in vitro and in vivo. We have carried out a systematic deletion analysis of ARS1, allowing us to define three functionally distinct domains, designated A, B, and C. Domain A is a sequence of 11 to 19bp, containing the core consensus element that is required for replication. The core consensus sequence, A/TTTTATPuTTTA/T, is conserved at all ARSs sequenced to date. A fragment containing only element A and 8 flanking nucleotides enables autonomous replication of centromeric plasmids. These plasmids replicate very inefficiently, suggesting that flanking sequences must be important for ARS function. Domain B also provides important sequences needed for efficient replication. Deletion of domain B drastically increases the doubling times of transformants and reduces plasmid stability. Domain B contains a potential consensus sequence conserved at some ARSs which overlaps a region of bent DNA. Mutational analysis suggests this bent DNA may be important for ARS function. Deletion of domain C has only a slight effect on replication of plasmids carrying those deletions.

We have identified a protein called ARS binding factor I (ABF-I) that binds to the HMR-E ARS and ARS1. We have purified this protein to homogeneity using conventional and oligonucleotide affinity chromatography. The protein has an apparent molecular weight of 135kDa and is present at about 700 molecules per diploid cell, based on the yield of purified protein and in situ antibody staining. DNaseI footprinting reveals that ABF-I binds sequence-specifically to an approximately 24bp sequence that overlaps element Bat ARSl. This same protein binds to and protects a similar size region at the HMR-E ARS.

We also find evidence for another ARS binding protein, ABF-III, based on DN asei footprint analysis and gel retardation assays. The protein protects approximately 22bp adjacent to the ABF-I site. There appears to be no interaction between ABF-I and ABF-III despite the proximity of their binding sites.

To address the function of ABF-I in DNA replication, we have cloned the ABF-I gene using rabbit polyclonal anti-sera and murine monoclonal antibodies against ABF-I to screen a λgt11 expression library. Four EcoRI restriction fragments were isolated which encoded proteins that were recognized by both polyclonal and monoclonal antibodies. A gene disruption can now be constructed to determine the in vivo function of ABF-I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA damage is extremely detrimental to the cell and must be repaired to protect the genome. DNA is capable of conducting charge through the overlapping π-orbitals of stacked bases; this phenomenon is extremely sensitive to the integrity of the π-stack, as perturbations attenuate DNA charge transport (CT). Based on the E. coli base excision repair (BER) proteins EndoIII and MutY, it has recently been proposed that redox-active proteins containing metal clusters can utilize DNA CT to signal one another to locate sites of DNA damage.

To expand our repertoire of proteins that utilize DNA-mediated signaling, we measured the DNA-bound redox potential of the nucleotide excision repair (NER) helicase XPD from Sulfolobus acidocaldarius. A midpoint potential of 82 mV versus NHE was observed, resembling that of the previously reported BER proteins. The redox signal increases in intensity with ATP hydrolysis in only the WT protein and mutants that maintain ATPase activity and not for ATPase-deficient mutants. The signal increase correlates directly with ATP activity, suggesting that DNA-mediated signaling may play a general role in protein signaling. Several mutations in human XPD that lead to XP-related diseases have been identified; using SaXPD, we explored how these mutations, which are conserved in the thermophile, affect protein electrochemistry.

To further understand the electrochemical signaling of XPD, we studied the yeast S. cerevisiae Rad3 protein. ScRad3 mutants were incubated on a DNA-modified electrode and exhibited a similar redox potential to SaXPD. We developed a haploid strain of S. cerevisiae that allowed for easy manipulation of Rad3. In a survival assay, the ATPase- and helicase-deficient mutants show little survival, while the two disease-related mutants exhibit survival similar to WT. When both a WT and G47R (ATPase/helicase deficient) strain were challenged with different DNA damaging agents, both exhibited comparable survival in the presence of hydroxyurea, while with methyl methanesulfonate and camptothecin, the G47R strain exhibits a significant change in growth, suggesting that Rad3 is involved in repairing damage beyond traditional NER substrates. Together, these data expand our understanding of redox-active proteins at the interface of DNA repair.