2 resultados para DIAMOND-LIKE FILMS
em CaltechTHESIS
Resumo:
Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.
Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.
The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.
At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.
Resumo:
Politically the Colorado river is an interstate as well as an international stream. Physically the basin divides itself distinctly into three sections. The upper section from head waters to the mouth of San Juan comprises about 40 percent of the total of the basin and affords about 87 percent of the total runoff, or an average of about 15 000 000 acre feet per annum. High mountains and cold weather are found in this section. The middle section from the mouth of San Juan to the mouth of the Williams comprises about 35 percent of the total area of the basin and supplies about 7 percent of the annual runoff. Narrow canyons and mild weather prevail in this section. The lower third of the basin is composed of mainly hot arid plains of low altitude. It comprises some 25 percent of the total area of the basin and furnishes about 6 percent of the average annual runoff.
The proposed Diamond Creek reservoir is located in the middle section and is wholly within the boundary of Arizona. The site is at the mouth of Diamond Creek and is only 16 m. from Beach Spring, a station on the Santa Fe railroad. It is solely a power project with a limited storage capacity. The dam which creats the reservoir is of the gravity type to be constructed across the river. The walls and foundation are of granite. For a dam of 290 feet in height, the back water will be about 25 m. up the river.
The power house will be placed right below the dam perpendicular to the axis of the river. It is entirely a concrete structure. The power installation would consist of eighteen 37 500 H.P. vertical, variable head turbines, directly connected to 28 000 kwa. 110 000 v. 3 phase, 60 cycle generators with necessary switching and auxiliary apparatus. Each unit is to be fed by a separate penstock wholly embedded into the masonry.
Concerning the power market, the main electric transmission lines would extend to Prescott, Phoenix, Mesa, Florence etc. The mining regions of the mountains of Arizona would be the most adequate market. The demand of power in the above named places might not be large at present. It will, from the observation of the writer, rapidly increase with the wonderful advancement of all kinds of industrial development.
All these things being comparatively feasible, there is one difficult problem: that is the silt. At the Diamond Creek dam site the average annual silt discharge is about 82 650 acre feet. The geographical conditions, however, will not permit silt deposites right in the reservoir. So this design will be made under the assumption given in Section 4.
The silt condition and the change of lower course of the Colorado are much like those of the Yellow River in China. But one thing is different. On the Colorado most of the canyon walls are of granite, while those on the Yellow are of alluvial loess: so it is very hard, if not impossible, to get a favorable dam site on the lower part. As a visitor to this country, I should like to see the full development of the Colorado: but how about THE YELLOW!