16 resultados para 204-1252

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cosmic-ray positron and negatron spectra between 11 and 204 MeV have been measured in a series of 3 high-altitude balloon flights launched from Fort Churchill, Manitoba, on July 16, July 21, and July 29, 1968. The detector system consisted of a magnetic spectrometer utilizing a 1000-gauss permanent magnet, scintillation counters, and a lucite Čerenkov counter.

Launches were timed so that the ascent through the 100 g/cm2 level of residual atmosphere occurred after the evening geomagnetic cutoff transition. Data gathered during ascent are used to correct for the contribution of atmospheric secondary electrons to the flux measured at float altitude. All flights floated near 2.4 g/cm2.

A pronounced morning intensity increase was observed in each flight. We present daytime positron and negatron data which support the interpretation of the diurnal flux variation as a change in the local geomagnetic cutoff. A large diurnal variation was observed in the count rate of positrons and negatrons with magnetic rigidities less than 11 MV and is evidence that the nighttime cutoff was well below this value.

Using nighttime data we derive extraterrestrial positron and negatron spectra. The positron-to-total-electron ratio which we measure indicates that the interstellar secondary, or collision, source contributes ≾50 percent of the electron flux within this energy interval. By comparing our measured positron spectrum with the positron spectrum calculated for the collision source we derive the absolute solar modulation for positrons in 1968. Assuming negligible energy loss during modulation, we derive the total interstellar electron spectrum as well as the spectrum of directly accelerated, or primary, electrons. We examine the effect of adiabatic deceleration and find that many of the conclusions regarding the interstellar electron spectrum are not significantly altered for an assumed energy loss of up to 50 percent of the original energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA is nature’s blueprint, holding within it the genetic code that defines the structure and function of an organism. A complex network of DNA-binding proteins called transcription factors can largely control the flow of information from DNA, so modulating the function of transcription factors is a promising approach for treating many diseases. Pyrrole-imidazole (Py-Im) polyamides are a class of DNA-binding oligomers, which can be synthetically programmed to bind a target sequence of DNA. Due to their unique shape complementarity and a series of favorable hydrogen bonding interactions that occur upon DNA-binding, Py-Im polyamides can bind to the minor groove of DNA with affinities comparable to transcription factors. Previous studies have demonstrated that these cell-permeable small molecules can enter cell nuclei and disrupt the transcription factor-DNA interface, thereby repressing transcription. As the use of Py-Im polyamides has significant potential as a type of modular therapeutic platform, the need for polyamides with extremely favorable biological properties and high potency will be essential. Described herein, a variety of studies have been performed aimed at improving the biological activity of Py-Im polyamides. To improve the biological potency and cellular uptake of these compounds, we have developed a next-generation class of polyamides bearing aryl-turn moieties, a simple structural modification that allows significant improvements in cellular uptake. This strategy was also applied to a panel of high-affinity cyclic Py-Im polyamides, again demonstrating the remarkable effect minor structural changes can have on biological activity. The solubility properties of Py-Im polyamides and use of formulating reagents with their treatment have also been examined. Finally, we describe the study of Py-Im polyamides as a potential artificial transcription factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaciers are often assumed to deform only at slow (i.e., glacial) rates. However, with the advent of high rate geodetic observations of ice motion, many of the intricacies of glacial deformation on hourly and daily timescales have been observed and quantified. This thesis explores two such short timescale processes: the tidal perturbation of ice stream motion and the catastrophic drainage of supraglacial meltwater lakes. Our investigation into the transmission length-scale of a tidal load represents the first study to explore the daily tidal influence on ice stream motion using three-dimensional models. Our results demonstrate both that the implicit assumptions made in the standard two-dimensional flow-line models are inherently incorrect for many ice streams, and that the anomalously large spatial extent of the tidal influence seen on the motion of some glaciers cannot be explained, as previously thought, through the elastic or viscoelastic transmission of tidal loads through the bulk of the ice stream. We then discuss how the phase delay between a tidal forcing and the ice stream’s displacement response can be used to constrain in situ viscoelastic properties of glacial ice. Lastly, for the problem of supraglacial lake drainage, we present a methodology for implementing linear viscoelasticity into an existing model for lake drainage. Our work finds that viscoelasticity is a second-order effect when trying to model the deformation of ice in response to a meltwater lake draining to a glacier’s bed. The research in this thesis demonstrates that the first-order understanding of the short-timescale behavior of naturally occurring ice is incomplete, and works towards improving our fundamental understanding of ice behavior over the range of hours to days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the active structures of Myanmar and its surrounding regions, and the earthquake geology of the major active structures. Such investigation is needed urgently for this rapidly developing country that has suffered from destructive earthquakes in its long history. To archive a better understanding of the regional active tectonics and the seismic potential in the future, we utilized a global digital elevation model and optical satellite imagery to describe geomorphologic evidence for the principal neotectonic features of the western half of the Southeast Asia mainland. Our investigation shows three distinct active structural systems that accommodate the oblique convergence between the Indian plate and Southeast Asia and the extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Each of these active deformation belts can be further separated into several neotectonic domains, in which structures show distinctive active behaviors from one to another.

In order to better understand the behaviors of active structures, we focused on the active characteristics of the right-lateral Sagaing fault and the oblique subducting northern Sunda megathrust in the second part of this thesis. The detailed geomorphic investigations along these two major plate-interface faults revealed the recent slip behavior of these structures, and plausible recurrence intervals of major seismic events. We also documented the ground deformation of the 2011 Tarlay earthquake in remote eastern Myanmar from remote sensing datasets and post-earthquake field investigations. The field observation and the remote sensing measurements of surface ruptures of the Tarlay earthquake are the first study of this kind in the Myanmar region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetric construction of quaternary stereocenters is a topic of great interest in the organic chemistry community given their prevalence in natural products and biologically active molecules. Over the last decade, the Stoltz group has pursued the synthesis of this challenging motif via a palladium-catalyzed allylic alkylation using chiral phosphinooxazoline (PHOX) ligands. Recent results indicate that the alkylation of lactams and imides consistently proceeds with enantioselectivities substantially higher than any other substrate class previously examined in this system. This observation prompted exploration of the characteristics that distinguish these molecules as superior alkylation substrates, resulting in newfound insights and marked improvements in the allylic alkylation of carbocyclic compounds.

General routes to cyclopentanoid and cycloheptanoid core structures have been developed that incorporate the palladium-catalyzed allylic alkylation as a key transformation. The unique reactivity of α-quaternary vinylogous esters upon addition of hydride or organometallic reagents enables divergent access to γ-quaternary acylcyclopentenes or cycloheptenones through respective ring contraction or carbonyl transposition pathways. Derivatization of the resulting molecules provides a series of mono-, bi-, and tricyclic systems that can serve as valuable intermediates for the total synthesis of complex natural products.

The allylic alkylation and ring contraction methodology has been employed to prepare variably functionalized bicyclo[5.3.0]decane molecules and enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-p-anisoyloxydauc-4,8-diene. This route overcomes the challenge of accessing β-substituted acylcyclopentenes by employing a siloxyenone to effect the Grignard addition and ring opening in a single step. Subsequent ring-closing metathesis and aldol reactions form the hydroazulene core of these targets. Derivatization of a key enone intermediate allows access to either the daucane sesquiterpene or sphenobolane diterpene carbon skeletons, as well as other oxygenated scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecules that inhibit DNA dependent processes are the most commonly used agents for the treatment of cancer. The genotoxicity associated with their mechanisms of action, unfortunately, make them extremely toxic to the patient and cancer cells alike. The work presented in this thesis outlines the development of Py-Im polyamides as non-genotoxic DNA-targeted antitumor molecules that interfere with RNA polymerase II elongation. We initially characterized the pharmacokinetic profiles of two hairpin polyamides to establish their bioavailability in the serum and tissues after a single administration. We next determined the molecular mechanism that contributes to toxicity of a hairpin polyamide in human prostate cancer cells in cell culture and we demonstrated antitumor effects of the compound against LNCaP xenografts in mice. Finally, we conducted animal toxicity experiments on 4 polyamides that vary on the gamma-turn with respect to the substitution of amino and acetamide groups at the alpha and beta positions. From this study we identified a second generation compound that retains antitumor activity with significantly reduce animal toxicity. This work sets the foundation for the development of Py-Im polyamides as DNA targeted therapeutics for the treatment of advanced prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes studies of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) using unnatural amino acid mutagenesis to gain high precision insights into the function of these important membrane proteins.

Chapter 2 considers the functional role of highly conserved proline residues within the transmembrane helices of the D2 dopamine GPCR. Through mutagenesis employing unnatural α-hydroxy acids, proline analogs, and N-methyl amino acids, we find that lack of backbone hydrogen bond donor ability is important to proline function. At one proline site we additionally find that a substituent on the proline backbone N is important to receptor function.

In Chapter 3, side chain conformation is probed by mutagenesis of GPCRs and the muscle-type nAChR. Specific side chain rearrangements of highly conserved residues have been proposed to accompany activation of these receptors. These rearrangements were probed using conformationally-biased β-substituted analogs of Trp and Phe and unnatural stereoisomers of Thr and Ile. We also modeled the conformational bias of the unnatural Trp and Phe analogs employed.

Chapters 4 and 5 examine details of ligand binding to nAChRs. Chapter 4 describes a study investigating the importance of hydrogen bonds between ligands and the complementary face of muscle-type and α4β4 nAChRs. A hydrogen bond involving the agonist appears to be important for ligand binding in the muscle-type receptor but not the α4β4 receptor.

Chapter 5 describes a study characterizing the binding of varenicline, an actively prescribed smoking cessation therapeutic, to the α7 nAChR. Additionally, binding interactions to the complementary face of the α7 binding site were examined for a small panel of agonists. We identified side chains important for binding large agonists such as varenicline, but dispensable for binding the small agonist ACh.

Chapter 6 describes efforts to image nAChRs site-specifically modified with a fluorophore by unnatural amino acid mutagenesis. While progress was hampered by high levels of fluorescent background, improvements to sample preparation and alternative strategies for fluorophore incorporation are described.

Chapter 7 describes efforts toward a fluorescence assay for G protein association with a GPCR, with the ultimate goal of probing key protein-protein interactions along the G protein/receptor interface. A wide range of fluorescent protein fusions were generated, expressed in Xenopus oocytes, and evaluated for their ability to associate with each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reports on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal nicotinic acetylcholine receptors (nAChRs) are pentameric ligand gated ion channels abundantly expressed in the central nervous system. Changes in the assembly and trafficking of nAChRs are pertinent to disease states including nicotine dependence, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), and Parkinson’s disease (PD). Here we investigate the application of high resolution fluorescence techniques for the study of nAChR assembly and trafficking. We also describe the construction and validation of a fluorescent α5 subunit and subsequent experiments to elucidate the cellular mechanisms through which α5 subunits are expressed, assembled into mature receptors, and trafficked to the cell surface. The effects of a known single nucleotide polymorphism (D398N) in the intracellular loop of α5 are also examined.

Additionally, this report describes the development of a combined total internal reflection fluorescence (TIRF) and lifetime imaging (FLIM) technique and the first application of this methodology for elucidation of stochiometric composition of nAChRs. Many distinct subunit combinations can form functional receptors. Receptor composition and stoichiometry confers unique biophysical and pharmacological properties to each receptor sub-type. Understanding the nature of assembly and expression of each receptor subtype yields important information about the molecular processes that may underlie the mechanisms through which nAChR contribute to disease and addiction states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft hierarchical materials often present unique functional properties that are sensitive to the geometry and organization of their micro- and nano-structural features across different lengthscales. Carbon Nanotube (CNT) foams are hierarchical materials with fibrous morphology that are known for their remarkable physical, chemical and electrical properties. Their complex microstructure has led them to exhibit intriguing mechanical responses at different length-scales and in different loading regimes. Even though these materials have been studied for mechanical behavior over the past few years, their response at high-rate finite deformations and the influence of their microstructure on bulk mechanical behavior and energy dissipative characteristics remain elusive.

In this dissertation, we study the response of aligned CNT foams at the high strain-rate regime of 102 - 104 s-1. We investigate their bulk dynamic response and the fundamental deformation mechanisms at different lengthscales, and correlate them to the microstructural characteristics of the foams. We develop an experimental platform, with which to study the mechanics of CNT foams in high-rate deformations, that includes direct measurements of the strain and transmitted forces, and allows for a full field visualization of the sample’s deformation through high-speed microscopy.

We synthesize various CNT foams (e.g., vertically aligned CNT (VACNT) foams, helical CNT foams, micro-architectured VACNT foams and VACNT foams with microscale heterogeneities) and show that the bulk functional properties of these materials are highly tunable either by tailoring their microstructure during synthesis or by designing micro-architectures that exploit the principles of structural mechanics. We also develop numerical models to describe the bulk dynamic response using multiscale mass-spring models and identify the mechanical properties at length scales that are smaller than the sample height.

The ability to control the geometry of microstructural features, and their local interactions, allows the creation of novel hierarchical materials with desired functional properties. The fundamental understanding provided by this work on the key structure-function relations that govern the bulk response of CNT foams can be extended to other fibrous, soft and hierarchical materials. The findings can be used to design materials with tailored properties for different engineering applications, like vibration damping, impact mitigation and packaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.

The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.

Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.

Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.

Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.

In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.

In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.

Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Barton laboratory has established that octahedral rhodium complexes bearing the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically destabilized sites, such as base pair mismatches, in DNA with high affinity and selectivity. These complexes approach DNA from the minor groove, ejecting the mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In recent years, we have shown that these metalloinsertor complexes also exhibit cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) machinery.

Here, we establish that a sensitive structure-activity relationship exists for rhodium metalloinsertors. We studied the relationship between the chemical structures of metalloinsertors and their effect on biological activity for ten complexes with similar DNA binding affinities, but wide variation in their lipophilicity. Drastic differences were observed in the selectivities of the complexes for MMR-deficient cells. Compounds with hydrophilic ligands were highly selective, exhibiting preferential cytotoxicity in MMR-deficient cells at low concentrations and short incubation periods, whereas complexes with lipophilic ligands displayed poor cell-selectivity. It was discovered that all of the complexes localized to the nucleus in concentrations sufficient for mismatch binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake. Significantly, these results support the notion that mitochondrial DNA is not the desired target for our metalloinsertor complexes; instead, selectivity stems from targeting mismatches in genomic DNA.

We have also explored the potential for metalloinsertors to be developed into more complex structures with multiple functionalities that could either enhance their overall potency or impart mismatch selectivity onto other therapeutic cargo. We have constructed a family of bifunctional metalloinsertor conjugates incorporating cis-platinum, each unique in its chemical structure, DNA binding interactions, and biological activity. The study of these complexes in MMR-deficient cells has established that the cell-selective biological activity of rhodium metalloinsertors proceeds through a critical cellular pathway leading to necrosis.

We further explored the underlying mechanisms surrounding the biological response to mismatch recognition by metalloinsertors in the genome. Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly accumulates in response to metalloinsertor treatment, signifying the induction of double strand breaks in the genome. Significantly, we have discovered that our metalloinsertor complexes selectively inhibit transcription in MMR-deficient cells, which may be a crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, preliminary in vivo studies have revealed the capability of these compounds to traverse the complex environments of multicellular organisms and accumulate in MMR-deficient tumors. Our ever-increasing understanding of metalloinsertors, as well as the development of new generations of complexes both monofunctional and bifunctional, enables their continued progress into the clinic as promising new chemotherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.

Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the coppercatalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-naseseazine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.