56 resultados para P-Systems Mapping
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.
Resumo:
The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.
This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.
Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).
Resumo:
My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.
Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.
Resumo:
The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag.
Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols.
Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime.
Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor ν = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at ν = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at the onset of the reentrant integer quantum Hall effect (RIQHE). And the thermopower at temperatures just above the RIQHE transition suggests the existence of an unconventional conducting phase.
Resumo:
The purpose of this thesis is to investigate the effect on performance and chamber temperature of adding hydrogen to a propellant system. The systems investigated are:
(1) RFNA-Aniline
(2) Nitromethane
(3) Anhydrous hydrazene-liquid oxygen
Since a systematic investigation of the performance parameters of the RFNA-Aniline system over a wide range of mixture ratios has never been made, it was decided to make these calculations, in addition to the investigations stated above.
The results of the calculations can best be summarized by a study of the figures at the end of the thesis. A few generalizations can be made. The effect of adding hydrogen in small quantities to a high temperature system is to increase the performance considerably without too much change in the chamber temperature. As more hydrogen is added, the percentage increase in performance. If hydrogen is added in large quantities, both the performance curve (effective exhaust velocity) and the chamber temperature curve flatten out.
The behavior discussed above is characteristic of hot propellant systems such as RFNA-Aniline and anhydrous hydrazene. In a low temperature system, such as nitromethane, the effect is quite different. The addition of hydrogen in small quantities causes a rapid decrease in chamber temperature, but the increase in performance is considerably less on a percentage basis. As more hydrogen is added the changes in performance and chamber temperature are almost linear.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.
Resumo:
The synthesis of iodonium salts of the general formula [C6H5IR]+X-, where R is an alkyl group and x- is a stabilizing anion, was attempted. For the choice of R three groups were selected, whose derivatives are known to be sluggish in SN1 and SN2 substitutions: cyclopropyl, 7, 7 -dimethyl-1-norbornyl, and 9 -triptycyl. The synthetic routes followed along classical lines which have been exploited in recent years by Beringer and students. Ultimately, the object of the present study was to study the reactions of the above salts with nucleophiles. In none of the three cases, however, was it possible to isolate a stable salt. A thermodynamic argument suggests that this must be due to kinetic instability rather than thermodynamic instability. Only iodocyclopropane and 1-iodoapocamphane formed isolable iododichlorides.
Several methylated 2, 2-difluoronorbornanes were prepared with the intent of correlating fluorine -19 chemical shifts with geometric features in a rigid system. The effect of a methyl group on the shielding of a β -fluorine is dependent upon the dihedral angle; the maximum effect (an upfield shift of the resonance) occurs at 0° and 180°, whereas almost no effect is felt at a dihedral angle of 120°. The effect of a methyl group on a γ -fluorine is to strongly shift the resonance downfield when fluorine and methyl group are in a 1, 3 - diaxial-like relationship. Molecular orbital calculations of fluorine shielding in a variety of molecules were carried out using the formalism developed by Pople; the results are, at best, in modest agreement with experiment.
Resumo:
I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.
The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.
A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.
II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
This thesis examines two problems concerned with surface effects in simple molecular systems. The first is the problem associated with the interaction of a fluid with a solid boundary, and the second originates from the interaction of a liquid with its own vapor.
For a fluid in contact with a solid wall, two sets of integro-differential equations, involving the molecular distribution functions of the system, are derived. One of these is a particular form of the well-known Bogolyubov-Born-Green-Kirkwood-Yvon equations. For the second set, the derivation, in contrast with the formulation of the B.B.G.K.Y. hierarchy, is independent of the pair-potential assumption. The density of the fluid, expressed as a power series in the uniform fluid density, is obtained by solving these equations under the requirement that the wall be ideal.
The liquid-vapor interface is analyzed with the aid of equations that describe the density and pair-correlation function. These equations are simplified and then solved by employing the superposition and the low vapor density approximations. The solutions are substituted into formulas for the surface energy and surface tension, and numerical results are obtained for selected systems. Finally, the liquid-vapor system near the critical point is examined by means of the lowest order B.B.G.K.Y. equation.
Resumo:
A general class of single degree of freedom systems possessing rate-independent hysteresis is defined. The hysteretic behavior in a system belonging to this class is depicted as a sequence of single-valued functions; at any given time, the current function is determined by some set of mathematical rules concerning the entire previous response of the system. Existence and uniqueness of solutions are established and boundedness of solutions is examined.
An asymptotic solution procedure is used to derive an approximation to the response of viscously damped systems with a small hysteretic nonlinearity and trigonometric excitation. Two properties of the hysteresis loops associated with any given system completely determine this approximation to the response: the area enclosed by each loop, and the average of the ascending and descending branches of each loop.
The approximation, supplemented by numerical calculations, is applied to investigate the steady-state response of a system with limited slip. Such features as disconnected response curves and jumps in response exist for a certain range of system parameters for any finite amount of slip.
To further understand the response of this system, solutions of the initial-value problem are examined. The boundedness of solutions is investigated first. Then the relationship between initial conditions and resulting steady-state solution is examined when multiple steady-state solutions exist. Using the approximate analysis and numerical calculations, it is found that significant regions of initial conditions in the initial condition plane lead to the different asymptotically stable steady-state solutions.