47 resultados para Experimental data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large portion of the noise in the light output of a laser oscillator is associated with the noise in the laser discharge. The effect of the discharge noise on the laser output has been studied. The discharge noise has been explained through an ac equivalent circuit of the laser discharge tube.

The discharge noise corresponds to time-varying spatial fluctuations in the electron density, the inverted population density and the dielectric permittivity of the laser medium from their equilibrium values. These fluctuations cause a shift in the resonant frequencies of the laser cavity. When the fluctuation in the dielectric permittivity of the laser medium is a longitudinally traveling wave (corresponding to the case in which moving striations exist in the positive column of the laser discharge), the laser output is frequency modulated.

The discharge noise has been analyzed by representing the laser discharge by an equivalent circuit. An appropriate ac equivalent circuit of a laser discharge tube has been obtained by considering the frequency spectrum of the current response of the discharge tube to an ac voltage modulation. It consist of a series ρLC circuit, which represents the discharge region, in parallel with a capacitance C', which comes mainly from the stray wiring. The equivalent inductance and capacitance of the discharge region have been calculated from the values of the resonant frequencies measured on discharge currents, gas pressures and lengths of the positive column. The experimental data provide for a set of typical values and dependencies on the discharge parameters for the equivalent inductance and capacitance of a discharge under laser operating conditions. It has been concluded from the experimental data that the equivalent inductance originates mainly from the positive column while the equivalent capacitance is due to the discharge region other than the positive column.

The ac equivalent circuit of the laser discharge has been shown analytically and experimentally to be applicable to analyzing the internal discharge noise. Experimental measurements have been made on the frequency of moving striations in a laser discharge. Its experimental dependence on the discharge current agrees very well with the expected dependence obtained from an analysis of the circuit and the experimental data on the equivalent circuit elements. The agreement confirms the validity of representing a laser discharge tube by its ac equivalent circuit in analyzing the striation phenomenon and other low frequency noises. Data have also been obtained for the variation of the striation frequency with an externally-applied longitudinal magnetic field and the increase in frequency has been attributed to a decrease in the equivalent inductance of the laser discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents methods by which electrical analogies can be obtained for nonlinear systems. The accuracy of these methods is investigated and several specific types of nonlinear equations are studied in detail.

In Part I a general method is given for obtaining electrical analogs of nonlinear systems with one degree of freedom. Loop and node methods are compared and the stability of the loop analogy is briefly considered.

Parts II and III give a description of the equipment and a discussion of its accuracy. Comparisons are made between experimental and analytic solutions of linear systems.

Part IV is concerned with systems having a nonlinear restoring force. In particular, solutions of Duffing's equation are obtained, both by using the electrical analogy and also by approximate analytical methods.

Systems with nonlinear damping are considered in Part V. Two specific examples are chosen: (1) forced oscillations and (2) self-excited oscillations (van der Pol’s equation). Comparisons are made with approximate analytic solutions.

Part VI gives experimental data for a system obeying Mathieu's equation. Regions of stability are obtained. Examples of subharmonic, ultraharmonic, and ultrasubharmonic oscillat1ons are shown.