47 resultados para DYNAMICAL REALIZATIONS
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
Part I. The regions of sequence homology and non-homology between the DNA molecules of T2, T4, and T6 have been mapped by the electron microscopic heteroduplex method. The heteroduplex maps have been oriented with respect to the T4 genetic map. They show characteristic, reproducible patterns of substitution and deletion loops. All heteroduplex molecules show more than 85% homology. Some of the loop patterns in T2/T4 heteroduplexes are similar to those in T4/T6.
We find that the rII, the lysozyme and ac genes, the D region, and gene 52 are homologous in T2, T4, and T6. Genes 43 and 47 are probably homologous between T2 and T4. The region of greatest homology is that bearing the late genes. The host range region, which comprises a part of gene 37 and all of gene 38, is heterologous in T2, T4, and T6. The remainder of gene 37 is partially homologous in the T2/T4 heteroduplex (Beckendorf, Kim and Lielausis, 1972) but it is heterologous in T4/T6 and in T2/T6. Some of the tRNA genes are homologous and some are not. The internal protein genes in general seem to be non-homologous.
The molecular lengths of the T-even DNAs are the same within the limit of experimental error; their calculated molecular weights are correspondingly different due to unequal glucosylation. The size of the T2 genome is smaller than that of T4 or T6, but the terminally repetitious region in T2 is larger. There is a length distribution of the terminal repetition for any one phage DNA, indicating a variability in length of the DNA molecules packaged within the phage.
Part II. E. coli cells infected with phage strains carrying extensive deletions encompassing the gene for the phage ser-tRNA are missing the phage tRNAs normally present in wild type infected cells. By DNA-RNA hybridization we have demonstrated that the DNA complementary to the missing tRNAs is also absent in such deletion mutants. Thus the genes for these tRNAs must be clustered in the same region of the genome as the ser-tRNA gene. Physical mapping of several deletions of the ser-tRNA and lysozyme genes, by examination of heteroduplex DNA in the electron microscope, has enabled us to locate the cluster, to define its maximum size, and to order a few of the tRNA genes within it. That such deletions can be isolated indicates that the phage-specific tRNAs from this cluster are dispensable.
Part III. Genes 37 and 38 between closely related phages T2 and T4 have been compared by genetic, biochemical, and hetero-duplex studies. Homologous, partially homologous and non-homologous regions of the gene 37 have been mapped. The host range determinant which interacts with the gene 38 product is identified.
Part IV. A population of double-stranded ØX-RF DNA molecules carrying a deletion of about 9% of the wild-type DNA has been discovered in a sample cultivated under conditions where the phage lysozyme gene is nonessential. The structures of deleted monomers, dimers, and trimers have been studied by the electron microscope heteroduplex method. The dimers and trimers are shown to be head-to-tail repeats of the deleted monomers. Some interesting examples of the dynamical phenomenon of branch migration in vitro have been observed in heteroduplexes of deleted dimer and trimer strands with undeleted wild-type monomer viral strands.