33 resultados para Scramjet Applications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a topology optimization methodology for the systematic design of optimal multifunctional silicon anode structures in lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such, this work considers two design objectives of minimum compliance under design dependent volume expansion, and maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the iteration history, mesh independence, and influence of prescribed volume fraction and minimum length scale are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the compliance and conduction design criteria. A weighting method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. Furthermore, a systematic parameter study is undertaken to determine the influence of the prescribed volume fraction and minimum length scale on the optimal combined topologies. The developments presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two topics in plane strain perfect plasticity are studied using the method of characteristics. The first is the steady-state indentation of an infinite medium by either a rigid wedge having a triangular cross section or a smooth plate inclined to the direction of motion. Solutions are exact and results include deformation patterns and forces of resistance; the latter are also applicable for the case of incipient failure. Experiments on sharp wedges in clay, where forces and deformations are recorded, showed a good agreement with the mechanism of cutting assumed by the theory; on the other hand the indentation process for blunt wedges transforms into that of compression with a rigid part of clay moving with the wedge. Finite element solutions, for a bilinear material model, were obtained to establish a correspondence between the response of the plane strain wedge and its axi-symmetric counterpart, the cone. Results of the study afford a better understanding of the process of indentation of soils by penetrometers and piles as well as the mechanism of failure of deep foundations (piles and anchor plates).

The second topic concerns the plane strain steady-state free rolling of a rigid roller on clays. The problem is solved approximately for small loads by getting the exact solution of two problems that encompass the one of interest; the first is a steady-state with a geometry that approximates the one of the roller and the second is an instantaneous solution of the rolling process but is not a steady-state. Deformations and rolling resistance are derived. When compared with existing empirical formulae the latter was found to agree closely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques are developed for estimating activity profiles in fixed bed reactors and catalyst deactivation parameters from operating reactor data. These techniques are applicable, in general, to most industrial catalytic processes. The catalytic reforming of naphthas is taken as a broad example to illustrate the estimation schemes and to signify the physical meaning of the kinetic parameters of the estimation equations. The work is described in two parts. Part I deals with the modeling of kinetic rate expressions and the derivation of the working equations for estimation. Part II concentrates on developing various estimation techniques.

Part I: The reactions used to describe naphtha reforming are dehydrogenation and dehydroisomerization of cycloparaffins; isomerization, dehydrocyclization and hydrocracking of paraffins; and the catalyst deactivation reactions, namely coking on alumina sites and sintering of platinum crystallites. The rate expressions for the above reactions are formulated, and the effects of transport limitations on the overall reaction rates are discussed in the appendices. Moreover, various types of interaction between the metallic and acidic active centers of reforming catalysts are discussed as characterizing the different types of reforming reactions.

Part II: In catalytic reactor operation, the activity distribution along the reactor determines the kinetics of the main reaction and is needed for predicting the effect of changes in the feed state and the operating conditions on the reactor output. In the case of a monofunctional catalyst and of bifunctional catalysts in limiting conditions, the cumulative activity is sufficient for predicting steady reactor output. The estimation of this cumulative activity can be carried out easily from measurements at the reactor exit. For a general bifunctional catalytic system, the detailed activity distribution is needed for describing the reactor operation, and some approximation must be made to obtain practicable estimation schemes. This is accomplished by parametrization techniques using measurements at a few points along the reactor. Such parametrization techniques are illustrated numerically with a simplified model of naphtha reforming.

To determine long term catalyst utilization and regeneration policies, it is necessary to estimate catalyst deactivation parameters from the the current operating data. For a first order deactivation model with a monofunctional catalyst or with a bifunctional catalyst in special limiting circumstances, analytical techniques are presented to transform the partial differential equations to ordinary differential equations which admit more feasible estimation schemes. Numerical examples include the catalytic oxidation of butene to butadiene and a simplified model of naphtha reforming. For a general bifunctional system or in the case of a monofunctional catalyst subject to general power law deactivation, the estimation can only be accomplished approximately. The basic feature of an appropriate estimation scheme involves approximating the activity profile by certain polynomials and then estimating the deactivation parameters from the integrated form of the deactivation equation by regression techniques. Different bifunctional systems must be treated by different estimation algorithms, which are illustrated by several cases of naphtha reforming with different feed or catalyst composition.