52 resultados para RADIATIONLESS DECAY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microwave scattering properties of an axially magnetized afterglow plasma column in an S-band waveguide have been investigated experimentally. The column axis is perpendicular to the electric field and the direction of wave propagation in the H_(10)-mode waveguide. Strong absorption is found in the range of upper hybrid frequencies, ω_c ≤ ω ≤ [ω^2_c + ω^2_p(r,t)]^(1/2) where ω_c is the electron cyclotron frequency and ω_p is the locally and temporally varying electron plasma frequency. With the high absorption the noise emission approaches the blackbody limit. A microwave radiometer has been used to measure the noise power and with a comparison and null-technique the electron temperature. As emission and absorption are largely confined to a resonant layer, spatially resolved temperature data are obtained. Time resolution is obtained by gating the radiometer. The peak electron density is derived from the emission or absorption onset at the maximum upper hybrid frequency and confirmed by independent measurements. With this diagnostic technique the electron density and temperature decay has been studied under a variety of experimental conditions. Ambipolar diffusion and collisional cooling essentially account for the plasma decay, but impurities and metastable ions play an important role. The diagnostic method is successfully applied in a microwave heating experiment. The existence of absorbing resonant layers is shown by a peak in the radial temperature profile where the local upper hybrid frequency equals the heating frequency. The knowledge of the plasma parameters is important in the study of hot plasma effects. Buchsbaum-Hasegawa modes are investigated in a wide range of magnetic fields (.5 < ω_c/ω < .985).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improved measurement of the neutrino mass via β decay spectroscopy requires the development of new energy measurement techniques and a new β decay source. A promising proposal is to measure the β energy by the frequency of the cyclotron radiation emitted in a magnetic field and to use a high purity atomic tritium source. This thesis examines the feasibility of using a magnetic trap to create and maintain such a source. We demonstrate that the loss rate due to β decay heating is not a limiting factor for the design. We also calculate the loss rate due to evaporative cooling and propose that the tritium can be cooled sufficiently during trap loading as to render this negligible. We further demonstrate a design for the magnetic field which produces a highly uniform field over a large fraction of the trap volume as needed for cyclotron frequency spectroscopy while still providing effective trapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The predictions of the SU(3) flavor symmetry of the strong interactions for the weak decay of charmed baryons and B-mesons are detailed. It is hoped that comparison between these predictions and experiment will shed some light on the underlying dynamics involved in these weak decays. Although only a few decay modes of the charmed baryons and B-mesons have been studied experimentally it is hoped that the next generation of B-factories and even Z-decays at LEP will provide enough events to test these predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of this thesis is electronic coupling in donor-bridge-acceptor systems. In Chapter 2, ET properties of cyanide-bridged dinuclear ruthenium complexes were investigated. The strong interaction between the mixed-valent ruthenium centers leads to intense metal-to-metal charge transfer bands (MMCT). Hush analysis of the MMCT absorption bands yields the electronic-coupling strength between the metal centers (H_(AB)) and the total reorganization energy (λ). Comparison of ET kinetics to calculated rates shows that classical ET models fail to account for the observed kinetics and nuclear tunneling must be considered.

In Chapter 3, ET rates were measured in four ruthenium-modified highpotential iron-sulfur proteins (HiPIP), which were modified at position His50, His81, His42 and His18, respectively. ET kinetics for the His50 and His81 mutants are a factor of 300 different, while the donor-acceptor separation is nearly identical. PATHWAY calculations corroborate these measurements and highlight the importance of structural detail of the intervening protein matrix.

In Chapter 4, the distance dependence of ET through water bridges was measured. Photoinduced ET measurements in aqueous glasses at 77 K show that water is a poor medium for ET. Luminescence decay and quantum yield data were analyzed in the context of a quenching model that accounts for the exponential distance dependence of ET, the distance distribution of donors and acceptors embedded in the glass and the excluded volumes generated by the finite sizes of the donors and acceptors.

In Chapter 5, the pH-dependent excited state dynamics of ruthenium-modified amino acids were measured. The [Ru(bpy)_(3)] ^(2+) chromophore was linked to amino acids via an amide linkage. Protonation of the amide oxygen effectively quenches the excited state. In addition. time-resolved and steady-state luminescence data reveal that nonradiative rates are very sensitive to the protonation state and the structure of the amino acid moiety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.

Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.

Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.

When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.

The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we build a novel analysis framework to perform the direct extraction of all possible effective Higgs boson couplings to the neutral electroweak gauge bosons in the H → ZZ(*) → 4l channel also referred to as the golden channel. We use analytic expressions of the full decay differential cross sections for the H → VV' → 4l process, and the dominant irreducible standard model qq ̄ → 4l background where 4l = 2e2μ,4e,4μ. Detector effects are included through an explicit convolution of these analytic expressions with transfer functions that model the detector responses as well as acceptance and efficiency effects. Using the full set of decay observables, we construct an unbinned 8-dimensional detector level likelihood function which is con- tinuous in the effective couplings, and includes systematics. All potential anomalous couplings of HVV' where V = Z,γ are considered, allowing for general CP even/odd admixtures and any possible phases. We measure the CP-odd mixing between the tree-level HZZ coupling and higher order CP-odd couplings to be compatible with zero, and in the range [−0.40, 0.43], and the mixing between HZZ tree-level coupling and higher order CP -even coupling to be in the ranges [−0.66, −0.57] ∪ [−0.15, 1.00]; namely compatible with a standard model Higgs. We discuss the expected precision in determining the various HVV' couplings in future LHC runs. A powerful and at first glance surprising prediction of the analysis is that with 100-400 fb-1, the golden channel will be able to start probing the couplings of the Higgs boson to diphotons in the 4l channel. We discuss the implications and further optimization of the methods for the next LHC runs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1) Equation of State of Komatiite

The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.

The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.

The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.

(2) Viscosity Measurement with Shock Waves

We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.

(3) Equation of State of Molybdenum at 1400°C

Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.

The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.

The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.

Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures from the Sun. These eruptions are important because they can harm astronauts, damage electrical infrastructure, and cause auroras. A mysterious feature of these eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly erupt. One model, torus instability, predicts an explosive-like transition from slow expansion to fast acceleration, if the spatial decay of the ambient magnetic field exceeds a threshold.

We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small, independently-powered auxiliary coils placed inside the vacuum chamber produce magnetic fields above the decay threshold that are strong enough to act on the plasma. When the strapping field is not too strong and not too weak, expansion force build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height, the plasma accelerates quickly, corresponding to the observed slow-rise to fast-acceleration of most solar eruptions. This behavior is in agreement with the predictions of torus instability.

Historically, eruptions have been separated into gradual CMEs and impulsive CMEs, depending on the acceleration profile. Recent numerical studies question this separation. One study varies the strapping field profile to produce gradual eruptions and impulsive eruptions, while another study varies the temporal profile of the voltage applied to the flux tube footpoints to produce the two eruption types. Our experiment reproduced these different eruptions by changing the strapping field magnitude, and the temporal profile of the current trace. This suggests that the same physics underlies both types of CME and that the separation between impulsive and gradual classes of eruption is artificial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Introductory Remarks

A brief discussion of the overall organization of the thesis is presented along with a discussion of the relationship between this thesis and previous work on the spectroscopic properties of benzene.

II. Radiationless Transitions and Line broadening

Radiationless rates have been calculated for the 3B1u→1A1g transitions of benzene and perdeuterobenzene as well as for the 1B2u→1A1g transition of benzene. The rates were calculated using a model that considers the radiationless transition as a tunneling process between two multi-demensional potential surfaces and assuming both harmonic and anharmonic vibrational potentials. Whenever possible experimental parameters were used in the calculation. To this end we have obtained experimental values for the anharmonicities of the carbon-carbon and carbon-hydrogen vibrations and the size of the lowest triplet state of benzene. The use of the breakdown of the Born-Oppenheimer approximation in describing radiationless transitions is critically examined and it is concluded that Herzberg-Teller vibronic coupling is 100 times more efficient at inducing radiationless transitions.

The results of the radiationless transition rate calculation are used to calculate line broadening in several of the excited electronic states of benzene. The calculated line broadening in all cases is in qualitative agreement with experimental line widths.

III. 3B1u1A1g Absorption Spectra

The 3B1u1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained at high resolution using the phosphorescence photoexcitation method. The spectrum exhibits very clear evidence of a pseudo-Jahn-Teller distortion of the normally hexagonal benzene molecule upon excitation to the triplet state. Factor group splitting of the 0 – 0 and 0 – 0 + v exciton bands have also been observed. The position of the mean of the 0 – 0 exciton band of C6H6 when compared to the phosphorescence origin of a C6H6 guest in a C6D6 host crystal indicates that the “static” intermolecular interactions between guest and hose are different for C6H6 and C6D6. Further investigation of this difference using the currently accepted theory of isotopic mixed crystals indicates that there is a 2cm-1 shift of the ideal mixed crystal level per hot deuterium atom. This shift is observed for both the singlet and triplet states of benzene.

IV. 3E1u1A1g, Absorption Spectra

The 3E1u1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained using the phosphorescence photoexcitation technique. In both cases the spectrum is broad and structureless as would be expected from the line broadening calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.

Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.

The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.

The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. PREAMBLE AND SCOPE

Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.

II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS

Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.

Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.

A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.

III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa

An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.

The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytolytic interaction of Polyoma virus with mouse embryo cells has been studied by radiobiological methods known to distinguish temperate from virulent bacteriophage. No evidence for "temperate" properties of Polyoma was found. During the course of these studies, it was observed that the curve of inactivation of Polyoma virus by ultraviolet light had two components - a more sensitive one at low doses, and a less sensitive one at higher doses. Virus which survives a low dose has an eclipse period similar to that of unirradiated virus, while virus surviving higher doses shows a significantly longer eclipse period. If Puromycin is present during the early part of the eclipse period, the survival curve becomes a single exponential with the sensitivity of the less sensitive component. These results suggest a repair mechanism in mouse cells which operates more effectively if virus development is delayed.

A comparison of the rates of inactivation of the cytolytic and transforming abilities of Polyoma by ultraviolet light, X-rays, nitrous acid treatment, or the decay of incorporated P32, showed that the transforming ability has a target size roughly 60% of that of the plaque-forming ability. It is thus concluded that only a fraction of the viral genes are necessary for causing transformation.

The appearance of virus-specific RNA in productively infected mouse kidney cells has been followed by means of hybridization between pulse-labelled RNA from the infected cells and the purified virus DNA. The results show a sharp increase in the amount of virus-specific RNA around the time of virus DNA synthesis. The presence of a small amount of virus-specific RNA in virus-free transformed cells has also been shown. This result offers strong evidence for the persistence of at least part of the viral genome in transformed cells.