36 resultados para Emission cross section


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The resolution of the so-called thermodynamic paradox is presented in this paper. It is shown, in direct contradiction to the results of several previously published papers, that the cutoff modes (evanescent modes having complex propagation constants) can carry power in a waveguide containing ferrite. The errors in all previous “proofs” which purport to show that the cutoff modes cannot carry power are uncovered. The boundary value problem underlying the paradox is studied in detail; it is shown that, although the solution is somewhat complicated, there is nothing paradoxical about it.

The general problem of electromagnetic wave propagation through rectangular guides filled inhomogeneously in cross-section with transversely magnetized ferrite is also studied. Application of the standard waveguide techniques reduces the TM part to the well-known self-adjoint Sturm Liouville eigenvalue equation. The TE part, however, leads in general to a non-self-adjoint eigenvalue equation. This equation and the associated expansion problem are studied in detail. Expansion coefficients and actual fields are determined for a particular problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction γ + p p + π+ + π- has been studied for photon energies between 800 and 1500 MeV and for dipion masses between 510 and 900 MeV. The bremsstrahlung beam from the Caltech synchrotron was passed through a liquid hydrogen target and spark chambers were used to detect the three final particles. In addition, the proton energy was determined by a range measurement. Approximately 40,000 photographs were taken, yielding 3018 acceptable events. The results were fit to an incoherent combination of the N*(1238) resonance, the po (750) resonance, and three-body phase space, with various models being tried for po production. The total cross section for po production is consistent with previous experiments. However, the angular dependence of the cross section is slightly more peaked in the forward direction, and the ratio of po production to phase space production is larger than previously observed.

However, since this experiment was only sensitive to the production angles cos θ cm ≥ .75, statistical fluctuations and/or an anisotropic distribution of background production have a severe influence on the po to background ratio. Of the po models tested, the results prefer po production by the one pion exchange mechanism with a very steep form factor dependence. The values of the mass and width of the po found here are consistent with previous experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We measured the differential cross section of the process γp → pƞ at the 1.5 GeV Caltech electron synchrotron, at photon energies from 0.8 to 1.45 GeV, at various angles between 45° and 100° in the center of mass. A counter-spark chamber array was used to determine the kinematics of all particles in the final state of the partial mode γp → pƞ (ƞ → 2γ). Analysis of 40,000 pictures yielded 6,000 events above a background which varied with energy from 5% to 30% of foreground. The cross section shows an energy dependence confirming earlier results up to 1000 MeV, but with improved statistics; it then remains roughly constant (at 50° C.M.), to 1.45 GeV. The data show a small angular variation, within the limited range covered, at energies between 1000 and 1100 MeV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two topics in plane strain perfect plasticity are studied using the method of characteristics. The first is the steady-state indentation of an infinite medium by either a rigid wedge having a triangular cross section or a smooth plate inclined to the direction of motion. Solutions are exact and results include deformation patterns and forces of resistance; the latter are also applicable for the case of incipient failure. Experiments on sharp wedges in clay, where forces and deformations are recorded, showed a good agreement with the mechanism of cutting assumed by the theory; on the other hand the indentation process for blunt wedges transforms into that of compression with a rigid part of clay moving with the wedge. Finite element solutions, for a bilinear material model, were obtained to establish a correspondence between the response of the plane strain wedge and its axi-symmetric counterpart, the cone. Results of the study afford a better understanding of the process of indentation of soils by penetrometers and piles as well as the mechanism of failure of deep foundations (piles and anchor plates).

The second topic concerns the plane strain steady-state free rolling of a rigid roller on clays. The problem is solved approximately for small loads by getting the exact solution of two problems that encompass the one of interest; the first is a steady-state with a geometry that approximates the one of the roller and the second is an instantaneous solution of the rolling process but is not a steady-state. Deformations and rolling resistance are derived. When compared with existing empirical formulae the latter was found to agree closely.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction K-p→K-π+n has been studied for incident kaon momenta of 2.0 GeV/c. A sample of 19,881 events was obtained by a measurement of film taken as part of the K-63 experiment in the Berkeley 72 inch bubble chamber.

Based upon our analysis, we have reached four conclusions. (1) The magnitude of the extrapolated Kπ cross section differs by a factor of 2 from the P-wave unitarity prediction and the K+n results; this is probably due to absorptive effects. (2) Fits to the moments yield precise values for the Kπ S-wave which agree with other recent statistically accurate experiments. (3) An anomalous peak is present in our backward K-p→(π+n) K- u-distribution. (4) We find a non-linear enhancement due to interference similiar to the one found by Bland et al. (Bland 1966).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PART I

The total cross-section for the reaction 21Ne(α, n)24Mg has been measured in the energy range 1.49 Mev ≤ Ecm ≤ 2.6 Mev. The cross-section factor, S(O), for this reaction has been determined, by means of an optical model calculation, to be in the range 1.52 x 1012 mb-Mev to 2.67 x 1012 mb-Mev, for interaction radii in the range 5.0 fm to 6.6 fm. With S(O) ≈ 2 x 1012 mb-Mev, the reaction 21Ne(α, n)24Mg can produce a large enough neutron flux to be a significant astrophysical source of neutrons.

PART II

The reaction12C(3He, p)14N has been studied over the energy range 12 Mev ≤ Elab ≤ 18 Mev. Angular distributions of the proton groups leading to the lowest seven levels in 14N were obtained.

Distorted wave calculations, based on two-nucleon transfer theory, were performed, and were found to be reliable for obtaining the value of the orbital angular momentum transferred. The present work shows that such calculations do not yield unambiguous values for the spectroscopic factors.