34 resultados para Aldol condensation and cleavage
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.
Resumo:
Part I:
The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.
Part II:
When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.
Resumo:
In order to determine the properties of the bicycloheptatrienyl anion (Ia) (predicted to be conjugatively stabilized by Hückel Molecular Orbital Theory) the neutral precursor, bicyclo[3. 2. 0] hepta-1, 4, 6-triene (I) was prepared by the following route.
Reaction of I with potassium-t-butoxide, potassium, or lithium dicyclohexylamide gave anion Ia in very low yield. Reprotonation of I was found to occur solely at the 1 or 5 position to give triene II, isolated as to its dimers.
A study of the acidity of I and of other conjugated hydrocarbons by means of ion cyclotron resonance spectroscopy resulted in determination of the following order of relative acidities:
H2S ˃ C5H6 ˃ CH3NO2 ˃ 1, 4- C5H8 ˃ I ˃ C2H5OH ˃ H2O; cyclo-C7H8 ˃ C2 H5OH; фCH3 ˃ CH3OH
In addition, limits for the proton affinities of the conjugate bases were determined:
350 kcal/mole ˂ PA(C5 H5-) ˂ 360 kcal/mole
362 kcal/mole ˂ PA(C5H7-, Ia, cyclo-C7H7-) ˂ 377 kcal/mole PA(фCH2-) ˂ 385 kcal/mole
Gas phase kinetics of the trans-XVIII to I transformation gave the following activation parameters: Ea = 43.0 kcal/mole, log A = 15.53 and ∆Sǂ (220°) = 9.6 cu. The results were interpreted as indicating initial 1,2 bond cleavage to give the 1,3-diradical which closed to I. Similar studies on cis-XVIII gave results consistent with a surface component to the reaction (Ea = 22.7 kcal/mole; log A = 9.23, ∆Sǂ (119°) = -18.9 eu).
The low pressure (0.01 to 1 torr) pyrolysis of trans-XVIII gave in addition to I, fulvenallene (LV), ethynylcyclopentadiene (LVI) and heptafulvalene (LVII). The relative ratios of the C7H6 isomers were found to be dependent upon temperature and pressure, higher relative pressure and lower temperatures favoring formation of I. The results were found to be consistent with the intermediacy of vibrationally excited I and subsequent reaction to give LV and LVI.
Resumo:
Part I. The cellular slime mold Dictyostelium discoideum is a simple eukaryote which undergoes a multi-cellular developmental process. Single cell myxamoebae divide vegetatively in the presence of a food source. When the food is depleted or removed, the cells aggregate, forming a migrating pseudoplasmodium which differentiates into a fruiting body containing stalk and spore cells. I have shown that during the developmental cycle glycogen phosphorylase, aminopeptidase, and alanine transaminase are developmentally regulated, that is their specific activities increased at a specific time in the developmental cycle. Phosphorylase activity is undetectable in developing cells until mid-aggregation whereupon it increases and reaches a maximum at mid-culmination. Thereafter the enzyme disappears. Actinomycin D and cycloheximide studies as well as studies with morphologically aberrant and temporally deranged mutants indicate that prior RNA and concomitant protein synthesis are necessary for the rise and decrease in activity and support the view that the appearance of the enzyme is regulated at the transcriptional level. Aminopeptidase and alanine transaminase increase 3 fold starting at starvation and reach maximum activity at 18 and 5 hours respectively.
The cellular DNA s of D. discoideum were characterized by CsC1 buoyant density gradient centrifugation and by renaturation kinetics. Whole cell DNA exhibits three bands in CsCl: ρ = 1.676 g/cc (nuclear main band), 1.687 (nuclear satellite), and 1.682 (mitochondrial). Reassociation kinetics at a criterion of Tm -23°C indicates that the nuclear reiterated sequences make up 30% of the genome (Cot1/2 (pure) 0.28) and the single-copy DNA 70% (Cot1/2(pure) 70). The complexity of the nuclear genome is 30 x 109 daltons and that of the mitochondrial DNA is 35-40 x 106 daltons (Cot1/2 0.15). rRNA cistrons constitute 2.2% of nuclear DNA and have a ρ = 1.682.
RNA extracted from 4 stages during developmental cycle of Dictyostelium was hybridized with purified single-copy nuclear DNA. The hybrids had properties indicative of single-copy DNA-RNA hybrids. These studies indicate that there are, during development, qualitative and quantitative changes in the portion of the single-copy of the genome transcribed. Overall, 56% of the genome is represented by transcripts between the amoeba and mid-culmination stages. Some 19% are sequences which are represented at all stages while 37% of the genome consists of stage specific sequences.
Part II. RNA and protein synthesis and polysome formation were studied during early development of the surf clam Spisula solidissima embryos. The oocyte has a small number of polysomes and a low but measurable rate of protein synthesis (leucine-3H incorporation). After fertilization, there is a continual increase in the percentage of ribosomes sedimenting in the polysome region. Newly synthesized RNA (uridine-5-3H incorporation) was found in polysomes as early as the 2-cell stage. During cleavage, the newly formed RNA is associated mainly with the light polysomes.
RNA extracted from polysomes labeled at the 4-cell stage is polydisperse, nonribosomal, and non-4 S. Actinomycin D causes a reduction of about 30% of the polysomes formed between fertilization and the 16-cell stage.
In the early cleavage stages the light polysomes are mostly affected by actinomycin.