47 resultados para random first-order transition
Resumo:
In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.
Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.
Resumo:
The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.
To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.
Resumo:
The theory of bifurcation of solutions to two-point boundary value problems is developed for a system of nonlinear first order ordinary differential equations in which the bifurcation parameter is allowed to appear nonlinearly. An iteration method is used to establish necessary and sufficient conditions for bifurcation and to construct a unique bifurcated branch in a neighborhood of a bifurcation point which is a simple eigenvalue of the linearized problem. The problem of bifurcation at a degenerate eigenvalue of the linearized problem is reduced to that of solving a system of algebraic equations. Cases with no bifurcation and with multiple bifurcation at a degenerate eigenvalue are considered.
The iteration method employed is shown to generate approximate solutions which contain those obtained by formal perturbation theory. Thus the formal perturbation solutions are rigorously justified. A theory of continuation of a solution branch out of the neighborhood of its bifurcation point is presented. Several generalizations and extensions of the theory to other types of problems, such as systems of partial differential equations, are described.
The theory is applied to the problem of the axisymmetric buckling of thin spherical shells. Results are obtained which confirm recent numerical computations.
Resumo:
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Resumo:
The role of metal-acceptor interactions arising from M–BR3 and M–PR3 bonding is discussed with respect to reactions between first-row transition metals and N2, H2, and CO. Thermally robust, S = 1/2 (TPB)Co(H2) and (TPB)Co(N2) complexes (TPB = tris(2- (diisopropylphosphino)phenyl)borane) are described and the energetics of N2 and H2 binding are measured. The H2 and N2 ligands are bound more weakly in the (TPB)Co complexes than in related (SiP3)M(L) complexes (SiP3 = tris(2- (diisopropylphosphino)phenyl)silyl). Comparisons within and between these two ligand platforms allow for the factors that affect N2 (and H2) binding and activation to be delineated. The characterization and reactivity of (DPB)Fe complexes (DPB = bis(2- (diisopropylphosphino)phenyl)phenylborane) in the context of N2 functionalization and E–H bond addition (E = H, C, N, Si) are described. This platform allows for the one-pot transformation of free N2 to an Fe hydrazido(-) complex via an Fe aminoimide intermediate. The principles learned from the N2 chemistry using (DPB)Fe are applied to CO reduction on the same system. The preparation of (DPB)Fe(CO)2 is described as well as its reductive functionalization to generate an unprecedented Fe dicarbyne. The bonding in this highly covalent complex is discussed in detail. Initial studies of the reactivity of the Fe dicarbyne reveal that a CO-derived olefin is released upon hydrogenation. Alternative approaches to uncovering unusual reactivity using metal- acceptor interactions are described in Chapters 5 and 6, including initial studies on a new π-accepting tridentate diphosphinosulfinyl ligand and strategies for designing ligands that undergo site-selective metallation to generate heterobimetallic complexes.
Resumo:
The field of cavity-optomechanics explores the interaction of light with sound in an ever increasing array of devices. This interaction allows the mechanical system to be both sensed and controlled by the optical system, opening up a wide variety of experiments including the cooling of the mechanical resonator to its quantum mechanical ground state and the squeezing of the optical field upon interaction with the mechanical resonator, to name two.
In this work we explore two very different systems with different types of optomechanical coupling. The first system consists of two microdisk optical resonators stacked on top of each other and separated by a very small slot. The interaction of the disks causes their optical resonance frequencies to be extremely sensitive to the gap between the disks. By careful control of the gap between the disks, the optomechanical coupling can be made to be quadratic to first order which is uncommon in optomechanical systems. With this quadratic coupling the light field is now sensitive to the energy of the mechanical resonator and can directly control the potential energy trapping the mechanical motion. This ability to directly control the spring constant without modifying the energy of the mechanical system, unlike in linear optomechanical coupling, is explored.
Next, the bulk of this thesis deals with a high mechanical frequency optomechanical crystal which is used to coherently convert photons between different frequencies. This is accomplished via the engineered linear optomechanical coupling in these devices. Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed and, in terms of an equivalent photon number signal level, are found to correspond to an internal noise level of only 6 and 4 times 10x^-3 quanta, respectively.
We begin by developing the requisite theoretical background to describe the system. A significant amount of time is then spent describing the fabrication of these silicon nanobeams, with an emphasis on understanding the specifics and motivation. The experimental demonstration of wavelength conversion is then described and analyzed. It is determined that the method of getting photons into the cavity and collected from the cavity is a fundamental limiting factor in the overall efficiency. Finally, a new coupling scheme is designed, fabricated, and tested that provides a means of coupling greater than 90% of photons into and out of the cavity, addressing one of the largest obstacles with the initial wavelength conversion experiment.
Resumo:
Glaciers are often assumed to deform only at slow (i.e., glacial) rates. However, with the advent of high rate geodetic observations of ice motion, many of the intricacies of glacial deformation on hourly and daily timescales have been observed and quantified. This thesis explores two such short timescale processes: the tidal perturbation of ice stream motion and the catastrophic drainage of supraglacial meltwater lakes. Our investigation into the transmission length-scale of a tidal load represents the first study to explore the daily tidal influence on ice stream motion using three-dimensional models. Our results demonstrate both that the implicit assumptions made in the standard two-dimensional flow-line models are inherently incorrect for many ice streams, and that the anomalously large spatial extent of the tidal influence seen on the motion of some glaciers cannot be explained, as previously thought, through the elastic or viscoelastic transmission of tidal loads through the bulk of the ice stream. We then discuss how the phase delay between a tidal forcing and the ice stream’s displacement response can be used to constrain in situ viscoelastic properties of glacial ice. Lastly, for the problem of supraglacial lake drainage, we present a methodology for implementing linear viscoelasticity into an existing model for lake drainage. Our work finds that viscoelasticity is a second-order effect when trying to model the deformation of ice in response to a meltwater lake draining to a glacier’s bed. The research in this thesis demonstrates that the first-order understanding of the short-timescale behavior of naturally occurring ice is incomplete, and works towards improving our fundamental understanding of ice behavior over the range of hours to days.
Resumo:
The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.
Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.
Resumo:
Faults can slip either aseismically or through episodic seismic ruptures, but we still do not understand the factors which determine the partitioning between these two modes of slip. This challenge can now be addressed thanks to the dense set of geodetic and seismological networks that have been deployed in various areas with active tectonics. The data from such networks, as well as modern remote sensing techniques, indeed allow documenting of the spatial and temporal variability of slip mode and give some insight. This is the approach taken in this study, which is focused on the Longitudinal Valley Fault (LVF) in Eastern Taiwan. This fault is particularly appropriate since the very fast slip rate (about 5 cm/yr) is accommodated by both seismic and aseismic slip. Deformation of anthropogenic features shows that aseismic creep accounts for a significant fraction of fault slip near the surface, but this fault also released energy seismically, since it has produced five M_w>6.8 earthquakes in 1951 and 2003. Moreover, owing to the thrust component of slip, the fault zone is exhumed which allows investigation of deformation mechanisms. In order to put constraint on the factors that control the mode of slip, we apply a multidisciplinary approach that combines modeling of geodetic observations, structural analysis and numerical simulation of the "seismic cycle". Analyzing a dense set of geodetic and seismological data across the Longitudinal Valley, including campaign-mode GPS, continuous GPS (cGPS), leveling, accelerometric, and InSAR data, we document the partitioning between seismic and aseismic slip on the fault. For the time period 1992 to 2011, we found that about 80-90% of slip on the LVF in the 0-26 km seismogenic depth range is actually aseismic. The clay-rich Lichi M\'elange is identified as the key factor promoting creep at shallow depth. Microstructural investigations show that deformation within the fault zone must have resulted from a combination of frictional sliding at grain boundaries, cataclasis and pressure solution creep. Numerical modeling of earthquake sequences have been performed to investigate the possibility of reproducing the results from the kinematic inversion of geodetic and seismological data on the LVF. We first investigate the different modeling strategy that was developed to explore the role and relative importance of different factors on the manner in which slip accumulates on faults. We compare the results of quasi dynamic simulations and fully dynamic ones, and we conclude that ignoring the transient wave-mediated stress transfers would be inappropriate. We therefore carry on fully dynamic simulations and succeed in qualitatively reproducing the wide range of observations for the southern segment of the LVF. We conclude that the spatio-temporal evolution of fault slip on the Longitudinal Valley Fault over 1997-2011 is consistent to first order with prediction from a simple model in which a velocity-weakening patch is embedded in a velocity-strengthening area.
Resumo:
This thesis presents two different forms of the Born approximations for acoustic and elastic wavefields and discusses their application to the inversion of seismic data. The Born approximation is valid for small amplitude heterogeneities superimposed over a slowly varying background. The first method is related to frequency-wavenumber migration methods. It is shown to properly recover two independent acoustic parameters within the bandpass of the source time function of the experiment for contrasts of about 5 percent from data generated using an exact theory for flat interfaces. The independent determination of two parameters is shown to depend on the angle coverage of the medium. For surface data, the impedance profile is well recovered.
The second method explored is mathematically similar to iterative tomographic methods recently introduced in the geophysical literature. Its basis is an integral relation between the scattered wavefield and the medium parameters obtained after applying a far-field approximation to the first-order Born approximation. The Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest descent method. It consists essentially of successive backprojections of the recorded wavefield, with angular and propagation weighing coefficients for density and bulk modulus. After each backprojection, the forward problem is computed and the residual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration and is therefore readily applicable to seismic data. Several examples of reconstruction for simple point scatterer models are performed. Recovery of the amplitudes of the anomalies are improved with successive iterations. Iterations also improve the sharpness of the images.
The elastic Born approximation, with the addition of a far-field approximation is shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs of incident-scattered rays. Incident rays propagate in the background medium, interacting only once with the scatterers. Scattered rays propagate as if in the background medium, with no interaction with the scatterers. An example of P-wave impedance inversion is performed on a VSP data set consisting of three offsets recorded in two wells.
Resumo:
The synthesis and direct observation of 1,1-di-tert-butyldiazene (16) at -127°C is described. The absorption spectrum of a red solution of 1,1-diazene 16 reveals a structured absorption band with λ max at 506 run (Me_2O, -125°C). The vibrational spacing in S_1 is about 1200 cm^(-1). The excited state of 16 emits weakly with a single maximum at 715 run observed in the fluorescence spectrum (Me_2O:CD_2Cl_2, -196°C). The proton NMR spectrum of 16 occurs as a singlet at 1.41 ppm. Monitoring this NMR absorption at -94^0 ± 2°C shows that 1,1-diazene 16 decomposes with a first-order rate of 1.8 x 10^(-3) sec(-1) to form isobutane, isobutylene and hexarnethylethane. This rate is 10^8 and 10^(34) times faster than the thermal decomposition of the corresponding cis and trans 1,2-di-tert-butyldiazene isomers. The free energy of activation for decomposition of 1,1-diazene 16 is found to be 12.5 ± 0.2 kcal/mol at -94°C which is much lower than the values of 19.1 and 19.4 kcal/lmole calculated at -94°C for N-(2,2,6,6- tetramethylpiperidyl)nitrene (3) and N-(2,2,5,5- tetrarnethylpyrrolidyl)nitrene (4), respectively. This difference between 16 and the cyclic-1,1-diazenes 3 and 4 can be attributed to a large steric interaction between the tert-butyl groups in 1,1-diazene 16.
In order to investigate the nature of the singlet-triplet gap in 1,1-diazenes, 2,5-di-tert-butyl-N-pyrrolynitrene (22) was generated but was found to be too reactive towards dimerization to be persistent. In the presence of dimethylsulfoxide, however, N-pyrrolynitrene (22) can be trapped as N-(2,5-di-tert-butyl- N'-pyrrolyl)dimethylsulfoxirnine (38). N-(2,5-di-tert-butyl-N'-pyrrolyl)dimethylsulfoximine (38-d^6) exchanges with free dimethylsulfoxide at 50°C in solution, presumably by generation and retrapping of pyrrolynitrene 22.
Resumo:
Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.
In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
Resumo:
A series of terl-butylperoxide complexes of hafnium, Cp*2Hf(R)(OOCMe3) (Cp* = ((η5-C5Me5); R = Cl, H, CH3, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2, CH=CHCMe3, C6H5, meta-C6H3(CH2)2) and Cp*(η5-C5(CH3)4CH2CH2CH2)Hf(OOCMe3), has been synthesized. One example has been structurally characterized, Cp*2Hf(OOCMe3)CH2CH3 crystallizes in space group P21/c, with a = 19.890(7)Å, b = 8.746(4)Å, c = 17.532(6)Å, β = 124.987(24)°, V = 2498(2)Å3, Z = 4 and RF = 0.054 (2222 reflections, I > 0). Despite the coordinative unsaturation of the hafnium center, the terl-butylperoxide ligand is coordinated in a mono-dentate ligand. The mode of decomposition of these species is highly dependent on the substituent R. For R = H, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2 a clean first order conversion to Cp*2Hf(OCMe3)(OR) is observed (for R CH2CH3, ΔHǂ = 19.6 kcal•mol-1, ΔSǂ = -13 e.u.). These results are discussed in terms of a two step mechanism involving η2-coordination of the terl-butylperoxide ligand. Homolytic O-O bond cleavage is observed upon heating of Cp*2Hf(OOCMe3) R (R = C6H6, meta-C6H3(CH3)2). In the presence of excess 9,10-dihydroanthracene thermolysis of Cp*2Hf(OOCMe3)C6H6 cleanly affords Cp*2Hf(C6H6)OH and HOCMe3 (ΔHǂ = 22.6 kcal•mol-1, ΔSǂ = -9 e.u.). The O-O bond strength in these complexes is thus estimated to be 22 kcal•mol-1.
Cp*2Ta(CH2)H, Cp*2Ta(CHC6H5)H, Cp*2Ta(C6H4)H, Cp*2Ta(CH2=CH2)H and Cp*2Ta(CH2=CHMe)H react, presumably through Cp*2Ta-R intermediates, with H2O to give Cp*2Ta(O)H and alkane. Cp*2Ta(O)H was structurally characterized: space group P21/n, a= 13.073(3)Å, b = 19.337(4)Å, c = 16.002(3)Å, β = 108.66(2)°, V = 3832(1)Å3, Z = 8 and RF = 0.0672 (6730 reflections). Reaction of terlbutylhydroperoxide with these same starting materials ultimately yields Cp*2Ta(O)R and HOCMe3. Cp*2Ta(CH2=CHR)OH species are proposed as intermediates in the olefin hydride reactions. Cp*2Ta(O2)R species can be generated from the reaction of the same starting materials and O2. Lewis acids have been shown to promote oxygen insertion in these complexes.
Resumo:
The discovery that the three ring polyamide Im-Py-Py-Dp containing imidazole (Im) and pyrrole (Py) carboxamides binds the DNA sequence 5'-(A,T)G(A,T)C(A,T)-3' as an antiparallel dimer offers a new model for the design of ligands for specific recognition of sequences in the minor groove containing both G,C and A,T base pairs. In Chapter 2, experiments are described in which the sequential addition of five N- methylpyrrolecarboxamides to the imidazole-pyrrole polyamide Im-Py-Py-Dp affords a series of six homologous polyamides, Im-(Py)2-7-Dp, that differ in the size of their binding site, apparent first order binding affinity, and sequence specificity. These results demonstrate that DNA sequences up to nine base pairs in length can be specifically recognized by imidazole-pyrrole polyamides containing three to seven rings by 2:1 polyamide-DNA complex formation in the minor groove. Recognition of a nine base pair site defines the new lower limit of the binding site size that can be recognized by polyamides containing exclusively imidazole and pyrrolecarboxamides. The results of this study should provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity.
In Chapter 3 the design and synthesis of the hairpin polyamide Im-Py-Im-Py-γ-Im- Py-Im-Py-Dp is described. Quantitative DNase I footprint titration experiments reveal that Im-Py-Im-Py-γ-Im-Py-Im-Py-Dp binds six base pair 5'-(A,T)GCGC(A,T)-3' sequences with 30-fold higher affinity than the unlinked polyamide Im-Py-Im-Py-Dp. The hairpin polyamide does not discriminate between A•T and T•A at the first and sixth positions of the binding site as three sites 5'-TGCGCT-3', 5'-TGCGCA-3', and 5 'AGCGCT- 3' are bound with similar affinity. However, Im-Py-Im-Py-γ-Im-Py-Im-PyDp is specific for and discriminates between G•C and C•G base pairs in the 5'-GCGC-3' core as evidenced by lower affinities for the mismatched sites 5'-AACGCA-3', 5'- TGCGTT-3', 5'-TGCGGT-3', and 5'-ACCGCT-3'.
In Chapter 4, experiments are described in which a kinetically stable hexa-aza Schiff base La3+ complex is covalently attached to a Tat(49-72) peptide which has been shown to bind the HIV-1 TAR RNA sequence. Although these metallo-peptides cleave TAR site-specifically in the hexanucleotide loop to afford products consistent with hydrolysis, a series of control experiments suggests that the observed cleavage is not caused by a sequence-specifically bound Tat(49-72)-La(L)3+ peptide.
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.