18 resultados para melting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).

Part I

A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.

Part II

The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.

Part III

Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.

Part IV

The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.

For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.

The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.

Part V

For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I develop the velocity and structure models for the Los Angeles Basin and Southern Peru. The ultimate goal is to better understand the geological processes involved in the basin and subduction zone dynamics. The results are obtained from seismic interferometry using ambient noise and receiver functions using earthquake- generated waves. Some unusual signals specific to the local structures are also studied. The main findings are summarized as follows:

(1) Los Angeles Basin

The shear wave velocities range from 0.5 to 3.0 km/s in the sediments, with lateral gradients at the Newport-Inglewood, Compton-Los Alamitos, and Whittier Faults. The basin is a maximum of 8 km deep along the profile, and the Moho rises to a depth of 17 km under the basin. The basin has a stretch factor of 2.6 in the center decreasing to 1.3 at the edges, and is in approximate isostatic equilibrium. This "high-density" (~1 km spacing) "short-duration" (~1.5 month) experiment may serve as a prototype experiment that will allow basins to be covered by this type of low-cost survey.

(2) Peruvian subduction zone

Two prominent mid-crust structures are revealed in the 70 km thick crust under the Central Andes: a low-velocity zone interpreted as partially molten rocks beneath the Western Cordillera – Altiplano Plateau, and the underthrusting Brazilian Shield beneath the Eastern Cordillera. The low-velocity zone is oblique to the present trench, and possibly indicates the location of the volcanic arcs formed during the steepening of the Oligocene flat slab beneath the Altiplano Plateau.

The Nazca slab changes from normal dipping (~25 degrees) subduction in the southeast to flat subduction in the northwest of the study area. In the flat subduction regime, the slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes a normal dipping geometry. The flat part closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the western half of the flat slab, which indicates the lack of melting and thus explains the cessation of the volcanism above. The velocity turns to normal values before the slab steepens again, indicating possible resumption of dehydration and ecologitization.

(3) Some unusual signals

Strong higher-mode Rayleigh waves due to the basin structure are observed in the periods less than 5 s. The particle motions provide a good test for distinguishing between the fundamental and higher mode. The precursor and coda waves relative to the interstation Rayleigh waves are observed, and modeled with a strong scatterer located in the active volcanic area in Southern Peru. In contrast with the usual receiver function analysis, multiples are extensively involved in this thesis. In the LA Basin, a good image is only from PpPs multiples, while in Peru, PpPp multiples contribute significantly to the final results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bacteriophage (TØ3) which infects the thermophilic bacterium Bacillus stearothermophilus ATCC 8005 was isolated and characterized. Infection of the bacterium by the bacteriophage was carried out at 60°C, the optimum growth temperature of the host. At 60°C the phage has a latent period of 18 minutes and a burst size of about 200. The phage is comparatively thermostable in broth. The half life of the phage is 400 minutes at 60°C, 120 minutes at 65°C, 40 minutes at 70°C and 12 minutes at 75°C. The activation energy for the heat inactivation of TØ3 is 56,000 cal. The buoyant density of TØ3 in a cesium chloride density gradient is 1.526.

Electron micrographs of TØ3 indicate that the phage has a regular hexagonal shaped head 57 mμ long. The morphology of the head is compatible with icosahedral symmetry. Each edge of the head is 29 mμ long, and there are 6 or 7 subunits along each edge. The tail of TØ3 is 125 mμ long and 10 mμ wide. There are about 30 cross striations that are spaced at 3.9 mμ intervals along the tail.

The DNA of phage TØ3 has a melting temperature of 88.5°C. Heat denatured TØ3 DNA can be extensively annealed in a high ionic strength environment. The buoyant density of TØ3 DNA in a cesium chloride density gradient is 1.695. TØ3 DNA contains: 42.7% guanine plus cytosine, as determined from the melting temperature; 43% guanine plus cytosine, as determined from the buoyant density; and 40.2% guanine plus cytosine, as determined by chromatographic separation and spectrophotometric estimation of the bases. The molecular weight of TØ3 DNA is 16.7 X 106 as determined from the band width of the TØ3 DNA concentration distribution in a cesium chloride density gradient. Electron microscopy of TØ3 DNA revealed a single linear molecule that is 11.7 μ long. This corresponds to a molecular weight of 22.5 X 106.

Heat denatured TØ3 DNA forms two bands in a cesium chloride density gradient, one at a density of 1.707 and the other at a density of 1.715. After the separated bands are mixed and annealed in the centrifuge cell, the renatured TØ3 DNA forms a single band at a density of 1.699. These results indicate that the two complementary strands of TØ3 DNA have different buoyant densities in cesium chloride, presumably because they have different base compositions.

The characteristics of TØ3 are compared with those of other phages. A hypothesis is presented for a relationship between the base composition of one strand of TØ3 DNA and the amino acid composition of the proteins of TØ3.