23 resultados para library automated system
Resumo:
The disposal of sewage is the most important item in public sanitation. It is the most important present day problem in every city whether large or small. The direct cause of the majority of epidemics is the contamination of the water supply of the city by the excreta of man or animal. Public health varies directly as public sanitation, and if the public sanitation be good, the liability of sickness caused by contamination of the water supply is greatly lessened. When a city outgrows its sewerage system the public health becomes endangered. There are two causes for the increased amount of sewerage, increase in population and increase in industrial and manufacturing wastes. The main problem in this connection is the ultimate disposal of the matter which reaches the sewers.
Resumo:
We have sought to determine the nature of the free-radical precursors to ring-opened hydrocarbon 5 and ring-closed hydrocarbon 6. Reasonable alternative formulations involve the postulation of hydrogen abstraction (a) by a pair of rapidly equilibrating classical radicals (the ring-opened allylcarbinyl-type radical 3 and the ring-closed cyclopropylcarbinyl-type 4), or (b) by a nonclassical radical such as homoallylic radical 7.
[Figure not reproduced.]
Entry to the radical system is gained via degassed thermal decomposition of peresters having the ring-opened and the ring-closed structures. The ratio of 6:5 is essentially independent of the hydrogen donor concentration for decomposition of the former at 125° in the presence of triethyltin hydrdride. A deuterium labeling study showed that the α and β methylene groups in 3 (or the equivalent) are rapidly interchanged under these conditions.
Existence of two (or more) product-forming intermediates is indicated (a) by dependence of the ratio 6:5 on the tin hydride concentration for decomposition of the ring-closed perester at 10 and 35°, and (b) by formation of cage products having largely or wholly the structure (ring-opened or ring-closed) of the starting perester.
Relative rates of hydrogen abstraction by 3 could be inferred by comparison of ratios of rate constants for hydrogen abstraction and ortho-ring cyclization:
[Figure not reproduced.]
At 100° values of ka/kr are 0.14 for hydrogen abstraction from 1,4-cyclohexadiene and 7 for abstraction from triethyltin hydride. The ratio 6:5 at the same temperature is ~0.0035 for hydrogen abstraction from 1,4-cyclohexadiene, ~0.078 for abstraction from the tin hydride, and ≥ 5 for abstraction from cyclohexadienyl radicals. These data indicate that abstraction of hydrogen from triethyltin hydride is more rapid than from 1,4-cyclohexadiene by a factor of ~1000 for 4, but only ~50 for 3.
Measurements of product ratios at several temperatures allowed the construction of an approximate energy-level scheme. A major inference is that isomerization of 3 to 4 is exothermic by 8 ± 3 kcal/mole, in good agreement with expectations based on bond dissociation energies. Absolute rate-constant estimates are also given.
The results are nicely compatible with a classical-radical mechanism, but attempted interpretation in terms of a nonclassical radical precursor of product ratios formed even from equilibrated radical intermediates leads, it is argued, to serious difficulties.
The roles played by hydrogen abstraction from 1,4,-cyclohexadiene and from the derived cyclohexadienyl radicals were probed by fitting observed ratios of 6:5 and 5:10 in the sense of least-squares to expressions derived for a complex mechanistic scheme. Some 30 to 40 measurements on each product ratio, obtained under a variety of experimental conditions, could be fit with an average deviation of ~6%. Significant systematic deviations were found, but these could largely be redressed by assuming (a) that the rate constant for reaction of 4 with cyclohexadienyl radical is inversely proportional to the viscosity of the medium (i.e., is diffusion-controlled), and (b) that ka/kr for hydrogen abstraction from 1,4-cyclohexadiene depends slightly on the composition of the medium. An average deviation of 4.4% was thereby attained.
Degassed thermal decomposition of the ring-opened perester in the presence of the triethyltin hydride occurs primarily by attack on perester of triethyltin radicals, presumably at the –O-O- bond, even at 0.01 M tin hydride at 100 and 125°. Tin ester and tin ether are apparently formed in closely similar amounts under these conditions, but the tin ester predominates at room temperature in the companion air-induced decomposition, indicating that attack on perester to give the tin ether requires an activation energy approximately 5 kcal/mole in excess of that for the formation of tin ester.
Resumo:
A study of human eye movements was made in order to elucidate the nature of the control mechanism in the binocular oculomotor system.
We first examined spontaneous eye movements during monocular and binocular fixation in order to determine the corrective roles of flicks and drifts. It was found that both types of motion correct fixational errors, although flicks are somewhat more active in this respect. Vergence error is a stimulus for correction by drifts but not by flicks, while binocular vertical discrepancy of the visual axes does not trigger corrective movements.
Second, we investigated the non-linearities of the oculomotor system by examining the eye movement responses to point targets moving in two dimensions in a subjectively unpredictable manner. Such motions consisted of hand-limited Gaussian random motion and also of the sum of several non-integrally related sinusoids. We found that there is no direct relationship between the phase and the gain of the oculomotor system. Delay of eye movements relative to target motion is determined by the necessity of generating a minimum afferent (input) signal at the retina in order to trigger corrective eye movements. The amplitude of the response is a function of the biological constraints of the efferent (output) portion of the system: for target motions of narrow bandwidth, the system responds preferentially to the highest frequency; for large bandwidth motions, the system distributes the available energy equally over all frequencies. Third, the power spectra of spontaneous eye movements were compared with the spectra of tracking eye movements for Gaussian random target motions of varying bandwidths. It was found that there is essentially no difference among the various curves. The oculomotor system tracks a target, not by increasing the mean rate of impulses along the motoneurons of the extra-ocular muscles, but rather by coordinating those spontaneous impulses which propagate along the motoneurons during stationary fixation. Thus, the system operates at full output at all times.
Fourth, we examined the relative magnitude and phase of motions of the left and the right visual axes during monocular and binocular viewing. We found that the two visual axes move vertically in perfect synchronization at all frequencies for any viewing condition. This is not true for horizontal motions: the amount of vergence noise is highest for stationary fixation and diminishes for tracking tasks as the bandwidth of the target motion increases. Furthermore, movements of the occluded eye are larger than those of the seeing eye in monocular viewing. This effect is more pronounced for horizontal motions, for stationary fixation, and for lower frequencies.
Finally, we have related our findings to previously known facts about the pertinent nerve pathways in order to postulate a model for the neurological binocular control of the visual axes.
Resumo:
A general class of single degree of freedom systems possessing rate-independent hysteresis is defined. The hysteretic behavior in a system belonging to this class is depicted as a sequence of single-valued functions; at any given time, the current function is determined by some set of mathematical rules concerning the entire previous response of the system. Existence and uniqueness of solutions are established and boundedness of solutions is examined.
An asymptotic solution procedure is used to derive an approximation to the response of viscously damped systems with a small hysteretic nonlinearity and trigonometric excitation. Two properties of the hysteresis loops associated with any given system completely determine this approximation to the response: the area enclosed by each loop, and the average of the ascending and descending branches of each loop.
The approximation, supplemented by numerical calculations, is applied to investigate the steady-state response of a system with limited slip. Such features as disconnected response curves and jumps in response exist for a certain range of system parameters for any finite amount of slip.
To further understand the response of this system, solutions of the initial-value problem are examined. The boundedness of solutions is investigated first. Then the relationship between initial conditions and resulting steady-state solution is examined when multiple steady-state solutions exist. Using the approximate analysis and numerical calculations, it is found that significant regions of initial conditions in the initial condition plane lead to the different asymptotically stable steady-state solutions.
Resumo:
In the first section of this thesis, two-dimensional properties of the human eye movement control system were studied. The vertical - horizontal interaction was investigated by using a two-dimensional target motion consisting of a sinusoid in one of the directions vertical or horizontal, and low-pass filtered Gaussian random motion of variable bandwidth (and hence information content) in the orthogonal direction. It was found that the random motion reduced the efficiency of the sinusoidal tracking. However, the sinusoidal tracking was only slightly dependent on the bandwidth of the random motion. Thus the system should be thought of as consisting of two independent channels with a small amount of mutual cross-talk.
These target motions were then rotated to discover whether or not the system is capable of recognizing the two-component nature of the target motion. That is, the sinusoid was presented along an oblique line (neither vertical nor horizontal) with the random motion orthogonal to it. The system did not simply track the vertical and horizontal components of motion, but rotated its frame of reference so that its two tracking channels coincided with the directions of the two target motion components. This recognition occurred even when the two orthogonal motions were both random, but with different bandwidths.
In the second section, time delays, prediction and power spectra were examined. Time delays were calculated in response to various periodic signals, various bandwidths of narrow-band Gaussian random motions and sinusoids. It was demonstrated that prediction occurred only when the target motion was periodic, and only if the harmonic content was such that the signal was sufficiently narrow-band. It appears as if general periodic motions are split into predictive and non-predictive components.
For unpredictable motions, the relationship between the time delay and the average speed of the retinal image was linear. Based on this I proposed a model explaining the time delays for both random and periodic motions. My experiments did not prove that the system is sampled data, or that it is continuous. However, the model can be interpreted as representative of a sample data system whose sample interval is a function of the target motion.
It was shown that increasing the bandwidth of the low-pass filtered Gaussian random motion resulted in an increase of the eye movement bandwidth. Some properties of the eyeball-muscle dynamics and the extraocular muscle "active state tension" were derived.
Resumo:
This thesis is an investigation into the nature of data analysis and computer software systems which support this activity.
The first chapter develops the notion of data analysis as an experimental science which has two major components: data-gathering and theory-building. The basic role of language in determining the meaningfulness of theory is stressed, and the informativeness of a language and data base pair is studied. The static and dynamic aspects of data analysis are then considered from this conceptual vantage point. The second chapter surveys the available types of computer systems which may be useful for data analysis. Particular attention is paid to the questions raised in the first chapter about the language restrictions imposed by the computer system and its dynamic properties.
The third chapter discusses the REL data analysis system, which was designed to satisfy the needs of the data analyzer in an operational relational data system. The major limitation on the use of such systems is the amount of access to data stored on a relatively slow secondary memory. This problem of the paging of data is investigated and two classes of data structure representations are found, each of which has desirable paging characteristics for certain types of queries. One representation is used by most of the generalized data base management systems in existence today, but the other is clearly preferred in the data analysis environment, as conceptualized in Chapter I.
This data representation has strong implications for a fundamental process of data analysis -- the quantification of variables. Since quantification is one of the few means of summarizing and abstracting, data analysis systems are under strong pressure to facilitate the process. Two implementations of quantification are studied: one analagous to the form of the lower predicate calculus and another more closely attuned to the data representation. A comparison of these indicates that the use of the "label class" method results in orders of magnitude improvement over the lower predicate calculus technique.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.
Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.
Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.
In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.
Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.