21 resultados para free edge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between fluid flows and elastic bodies are ubiquitous in nature. One such phenomena that is encountered on a daily basis is the flapping and fluttering of leaves in the wind. The fluid-structure interaction that governs the physics of a leaf in the wind is poorly understood at best and has potential applications in biomechanics, vehicle design, and energy conversion. We build upon previous work on the flapping dynamics of inverted flags, which are cantilevered elastic sheets with free leading edge and fixed trailing edge that display unique large amplitude oscillatory behaviors. We model a leaf in the laboratory using modified inverted flags, experimentally probing the governing parameters behind leaf fluttering as well as shedding light on the physics behind the inverted flag phenomena. The behavior of these "inverted leaves" studied here display sensitive dependence on two biomechanically relevant parameters, stem-to-leaf rigidity and stem-to-leaf length. In addition, leaves on a tree are not often found alone. We seek to understand the complex interactions of multiple fluttering and flapping leaves by way of examining the interactions between pairs of inverted flags. Coupling through their flow fields, pairs of inverted flags exhibit striking emergent phenomena. We report these observed dynamical behaviors and the conditions upon which they arise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppose that AG is a solvable group with normal subgroup G where (|A|, |G|) = 1. Assume that A is a class two odd p group all of whose irreducible representations are isomorphic to subgroups of extra special p groups. If pc ≠ rd + 1 for any c = 1, 2 and any prime r where r2d+1 divides |G| and if CG(A) = 1 then the Fitting length of G is bounded by the power of p dividing |A|.

The theorem is proved by applying a fixed point theorem to a reduction of the Fitting series of G. The fixed point theorem is proved by reducing a minimal counter example. IF R is an extra spec r subgroup of G fixed by A1, a subgroup of A, where A1 centralizes D(R), then all irreducible characters of A1R which are nontrivial on Z(R) are computed. All nonlinear characters of a class two p group are computed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sudden axial acceleration of a column of liquid bounded at one end by a concave free surface has been found, experimentally, to produce a jet which issues from the free surface with a speed several times that imparted to the column.

Theoretical approximations to such flows, valid for small time, are formulated subject to the assumption that the fluid is inviscid and incompressible. In a special two-dimensional case, it is found that, for vanishingly small time, the velocity at the point on the free surface from which the jet emanates is π/2 times the velocity imparted to the column. The solutions to several problems in two and three dimensions assuming that the initial curvature of the free surface is small, lead to values for this ratio dependent upon the curvature—the initial velocity in the case of axial symmetry exceeding that of the analogous two-dimensional problem by approximately 25%.

Experiments conducted upon the phenomenon give values systematically in excess of those predicted by the theory, although theory and experiment are in qualitative agreement with respect to the displacement of the free surface. It is suggested that the discrepancy is attributable to effects of finite curvature having been imperfectly accounted for in the axially-symmetric analysis.

Photographic materials on pp. 115, 120, and 121 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is proposed in this thesis for the control mechanism of free fatty acid-glucose metabolism in healthy individuals under resting conditions. The objective is to explain in a consistent manner some clinical laboratory observations such as glucose, insulin and free fatty acid responses to intravenous injection of glucose, insulin, etc. Responses up to only about two hours from the beginning of infusion are considered. The model is an extension of the one for glucose homeostasis proposed by Charette, Kadish and Sridhar (Modeling and Control Aspects of Glucose Homeostasis. Mathematical Biosciences, 1969). It is based upon a systems approach and agrees with the current theories of glucose and free fatty acid metabolism. The description is in terms of ordinary differential equations. Validation of the model is based on clinical laboratory data available at the present time. Finally procedures are suggested for systematically identifying the parameters associated with the free fatty acid portion of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, direct and accurate method to predict the pressure distribution on supercavitating hydrofoils with rounded noses is presented. The thickness of body and cavity is assumed to be small. The method adopted in the present work is that of singular perturbation theory. Far from the leading edge linearized free streamline theory is applied. Near the leading edge, however, where singularities of the linearized theory occur, a non-linear local solution is employed. The two unknown parameters which characterize this local solution are determined by a matching procedure. A uniformly valid solution is then constructed with the aid of the singular perturbation approach.

The present work is divided into two parts. In Part I isolated supercavitating hydrofoils of arbitrary profile shape with parabolic noses are investigated by the present method and its results are compared with the new computational results made with Wu and Wang's exact "functional iterative" method. The agreement is very good. In Part II this method is applied to a linear cascade of such hydrofoils with elliptic noses. A number of cases are worked out over a range of cascade parameters from which a good idea of the behavior of this type of important flow configuration is obtained.

Some of the computational aspects of Wu and Wang's functional iterative method heretofore not successfully applied to this type of problem are described in an appendix.