18 resultados para circular restricted three-body problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem motivating this investigation is that of pure axisymmetric torsion of an elastic shell of revolution. The analysis is carried out within the framework of the three-dimensional linear theory of elastic equilibrium for homogeneous, isotropic solids. The objective is the rigorous estimation of errors involved in the use of approximations based on thin shell theory.

The underlying boundary value problem is one of Neumann type for a second order elliptic operator. A systematic procedure for constructing pointwise estimates for the solution and its first derivatives is given for a general class of second-order elliptic boundary-value problems which includes the torsion problem as a special case.

The method used here rests on the construction of “energy inequalities” and on the subsequent deduction of pointwise estimates from the energy inequalities. This method removes certain drawbacks characteristic of pointwise estimates derived in some investigations of related areas.

Special interest is directed towards thin shells of constant thickness. The method enables us to estimate the error involved in a stress analysis in which the exact solution is replaced by an approximate one, and thus provides us with a means of assessing the quality of approximate solutions for axisymmetric torsion of thin shells.

Finally, the results of the present study are applied to the stress analysis of a circular cylindrical shell, and the quality of stress estimates derived here and those from a previous related publication are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

The slow, viscous flow past a thin screen is analyzed based on Stokes equations. The problem is reduced to an associated electric potential problem as introduced by Roscoe. Alternatively, the problem is formulated in terms of a Stokeslet distribution, which turns out to be equivalent to the first approach.

Special interest is directed towards the solution of the Stokes flow past a circular annulus. A "Stokeslet" formulation is used in this analysis. The problem is finally reduced to solving a Fredholm integral equation of the second kind. Numerical data for the drag coefficient and the mean velocity through the hole of the annulus are obtained.

Stokes flow past a circular screen with numerous holes is also attempted by assuming a set of approximate boundary conditions. An "electric potential" formulation is used, and the problem is also reduced to solving a Fredholm integral equation of the second kind. Drag coefficient and mean velocity through the screen are computed.

Part II

The purpose of this investigation is to formulate correctly a set of boundary conditions to be prescribed at the interface between a viscous flow region and a porous medium so that the problem of a viscous flow past a porous body can be solved.

General macroscopic equations of motion for flow through porous media are first derived by averaging Stokes equations over a volume element of the medium. These equations, including viscous stresses for the description, are more general than Darcy's law. They reduce to Darcy's law when the Darcy number becomes extremely small.

The interface boundary conditions of the first kind are then formulated with respect to the general macroscopic equations applied within the porous region. An application of such equations and boundary conditions to a Poiseuille shear flow problem demonstrates that there usually exists a thin interface layer immediately inside the porous medium in which the tangential velocity varies exponentially and Darcy's law does not apply.

With Darcy's law assumed within the porous region, interface boundary conditions of the second kind are established which relate the flow variables across the interface layer. The primary feature is a jump condition on the tangential velocity, which is found to be directly proportional to the normal gradient of the tangential velocity immediately outside the porous medium. This is in agreement with the experimental results of Beavers, et al.

The derived boundary conditions are applied in the solutions of two other problems: (1) Viscous flow between a rotating solid cylinder and a stationary porous cylinder, and (2) Stokes flow past a porous sphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a simplified approach for estimating theoretically the influence of local subsoils upon the ground motion during an earthquake, the problem of an idealized layered system subjected to vertically incident plane body waves was studied. Both the technique of steady-state analysis and the technique of transient analysis have been used to analyze the problem.

In the steady-state analysis, a recursion formula has been derived for obtaining the response of a layered system to sinusoidally steady-state input. Several conclusions are drawn concerning the nature of the amplification spectrum of a nonviscous layered system having its layer stiffnesses increasing with depth. Numerical examples are given to demonstrate the effect of layer parameters on the amplification spectrum of a layered system.

In the transient analysis, two modified shear beam models have been established for obtaining approximately the response of a layered system to earthquake-like excitation. The method of continuous modal analysis was adopted for approximate analysis of the models, with energy dissipation in the layers, if any, taken into account. Numerical examples are given to demonstrate the accuracy of the models and the effect of a layered system in modifying the input motion.

Conditions are established, under which the theory is applicable to predict the influence of local subsoils on the ground motion during an earthquake. To demonstrate the applicability of the models to actual cases, three examples of actually recorded earthquake events are examined. It is concluded that significant modification of the incoming seismic waves, as predicted by the theory, is likely to occur in well defined soft subsoils during an earthquake, provided that certain conditions concerning the nature of the incoming seismic waves are satisfied.