19 resultados para algebraic problems
Resumo:
Interest in the possible applications of a priori inequalities in linear elasticity theory motivated the present investigation. Korn's inequality under various side conditions is considered, with emphasis on the Korn's constant. In the "second case" of Korn's inequality, a variational approach leads to an eigenvalue problem; it is shown that, for simply-connected two-dimensional regions, the problem of determining the spectrum of this eigenvalue problem is equivalent to finding the values of Poisson's ratio for which the displacement boundary-value problem of linear homogeneous isotropic elastostatics has a non-unique solution.
Previous work on the uniqueness and non-uniqueness issue for the latter problem is examined and the results applied to the spectrum of the Korn eigenvalue problem. In this way, further information on the Korn constant for general regions is obtained.
A generalization of the "main case" of Korn's inequality is introduced and the associated eigenvalue problem is a gain related to the displacement boundary-value problem of linear elastostatics in two dimensions.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
Two topics in plane strain perfect plasticity are studied using the method of characteristics. The first is the steady-state indentation of an infinite medium by either a rigid wedge having a triangular cross section or a smooth plate inclined to the direction of motion. Solutions are exact and results include deformation patterns and forces of resistance; the latter are also applicable for the case of incipient failure. Experiments on sharp wedges in clay, where forces and deformations are recorded, showed a good agreement with the mechanism of cutting assumed by the theory; on the other hand the indentation process for blunt wedges transforms into that of compression with a rigid part of clay moving with the wedge. Finite element solutions, for a bilinear material model, were obtained to establish a correspondence between the response of the plane strain wedge and its axi-symmetric counterpart, the cone. Results of the study afford a better understanding of the process of indentation of soils by penetrometers and piles as well as the mechanism of failure of deep foundations (piles and anchor plates).
The second topic concerns the plane strain steady-state free rolling of a rigid roller on clays. The problem is solved approximately for small loads by getting the exact solution of two problems that encompass the one of interest; the first is a steady-state with a geometry that approximates the one of the roller and the second is an instantaneous solution of the rolling process but is not a steady-state. Deformations and rolling resistance are derived. When compared with existing empirical formulae the latter was found to agree closely.