19 resultados para VIS SPECTROSCOPY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational equilibrium in medium-sized rings has been investigated by the temperature variation of the fluorine-19 n.m.r. spectra of 1, 1-difluorocycloalkanes and various substituted derivatives of them. Inversion has been found to be fast on the n.m.r. time scale at -180˚ for 1, 1-difluorocycloheptane, but slow for 1, 1-difluoro-4, 4-dimethylcycloheptane at -150˚. At low temperature, the latter compound affords a single AB pattern with a chemical-shift difference of 841 cps. which has been interpreted in terms of the twist-chair conformation with the methyl groups on the axis position and the fluorine atoms in the 4-position. At room temperature, the n.m.r. spectrum of 1, 1-difluoro-4-t-butylcycloheptane affords an AB pattern with a chemical-shift difference of 185 cps. The presence of distinct trans and gauche couplings from the adjacent hydrogens has been interpreted to suggest the existence of a single predominant form, the twist chair with the fluorine atoms on the axis position.

Investigation of 1, 1-difluorocycloöctane and 1, 1, 4, 4-tetrafluorocycloöctane has led to the detection of two kinetic processes both having activation energies of 8-10 kcal./mole but quite different A values. In light of these results eleven different conformations of cycloöctane along with a detailed description of the ways in which they may be interconverted are discussed. An interpretation involving the twist-boat conformation rapidly equilibrating through the saddle and the parallel-boat forms at room temperature is compatible with the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution, natural-abundance 13C spectra have been obtained from a wide variety of organic compounds; 13C chemical shifts and coupling constants have been correlated with other molecular properties.

Geminal and vicinal, carbon-proton couplings in benzene and the five- and six-membered aromatic heterocycles have been related to the corresponding proton-proton couplings in substituted ethylenes. The carbon-proton coupling constants in benzene are JCCH = + 1.0, JCCCH = +7.4 and JCCCH = -1.1 Hz. Extended Hückel wavefunctions are uniformly poor in explaining the long-range, carbon-proton couplings in aromatic systems.

Couplings between carbon and elements other than hydrogen have been observed in proton decoupled 13C spectra. All of the carbons in fluorobenzene and 1-fluoronaphthalene, but only six of the carbons in 2-fluoronaphthalene are coupled to the fluorine. One-bond, carbon-phosphorus coupling in trialkylphosphines is negative, while one-bond, carbon-phosphorus coupling in tetra-alkylphosphonium ions is positive. Atoms which do not use hybrid orbitals to form bonds to carbon (F, P(III), Se, Te) may have negative, one-bond coupling constants because of the failure of the average energy approximation. One-bond couplings between carbon and carbon, silicon, tin, lead and mercury appear to be explainable in terms of an effective nuclear charge and the s-bond order of the metal. Couplings between carbon and nitrogen and phosphorus (IV) have significant negative contributions to the Fermi contact coupling expression, though, within one series, correlations with s-bond order may be valid. Carbon-carbon coupling in cyclopropane derivatives (10-15 Hz) is consistent with a high degree of p character in the interior orbitals. Some two- and three-bond carbon-carbon coupling constants have also been observed.

Substituent effects of hydroxyl groups on the 13C chemical shifts of continuous-chain alkanes depend both on steric and electronic factors. The hydroxyl substituent effects in the long-chain, primary alcohols are α = -48.3, β = -10.2, and γ = +6.0 ppm. The upfield γ effect is attributed to steric crowding in the gauche conformations. Additivity of the hydroxyl and carbonyl and alkyl substituent effects in alkyl-substituted cyclohexanols and cyclohexanones has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of iodonium salts of the general formula [C6H5IR]+X-, where R is an alkyl group and x- is a stabilizing anion, was attempted. For the choice of R three groups were selected, whose derivatives are known to be sluggish in SN1 and SN2 substitutions: cyclopropyl, 7, 7 -dimethyl-1-norbornyl, and 9 -triptycyl. The synthetic routes followed along classical lines which have been exploited in recent years by Beringer and students. Ultimately, the object of the present study was to study the reactions of the above salts with nucleophiles. In none of the three cases, however, was it possible to isolate a stable salt. A thermodynamic argument suggests that this must be due to kinetic instability rather than thermodynamic instability. Only iodocyclopropane and 1-iodoapocamphane formed isolable iododichlorides.

Several methylated 2, 2-difluoronorbornanes were prepared with the intent of correlating fluorine -19 chemical shifts with geometric features in a rigid system. The effect of a methyl group on the shielding of a β -fluorine is dependent upon the dihedral angle; the maximum effect (an upfield shift of the resonance) occurs at 0° and 180°, whereas almost no effect is felt at a dihedral angle of 120°. The effect of a methyl group on a γ -fluorine is to strongly shift the resonance downfield when fluorine and methyl group are in a 1, 3 - diaxial-like relationship. Molecular orbital calculations of fluorine shielding in a variety of molecules were carried out using the formalism developed by Pople; the results are, at best, in modest agreement with experiment.