25 resultados para TTR V30M MUTANT
Resumo:
The temperature dependences of the reduction potentials (Eo') of wildtype human myoglobin (Mb) and three site-directed mutants have been measured by using thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. At pH 7.0, reduction of the heme iron (III) in the former two proteins is accompanied by uptake of a proton by the protein. The changes in Eo', and the standard entropy (ΔSo') and enthalpy (ΔHo') of reduction in the mutant proteins were determined relative to values for wild-type; the change in Eo' at 25°C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. Reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues, and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.
Through analysis of the temperature dependence and shapes of NMR dispersion signals, it is determined that a water molecule is bound to the sixth coordination site of the ferric heme in the Val68Asp and in the Val68Asn recombinant proteins while the carboxyl group of the sidechain of Glu68 occupies this position in Val68Glu. The relative rhombic distortions in the ESR spectra of these mutant proteins combined with H217O and spin interconversion experiments performed on them confirm the conclusions of the NMRD study.
The rates of intramolecular electron transfer (ET) of (NH3)5Ru-His48 (Val68Asp, His81GIn, Cys110AIa)Mb and (NH3)5Ru-His48 (Val68GIu,His81GIn,Cys110Ala)Mb were measured to be .85(3)s-1 and .30(2)s-1, respectively. This data supports the hypothesis that entropy of 111 reduction and reorganization energy of ET are inversely related. The rates of forward and reverse ET for (NH3)5 Ru-His48 (Val68GIu, His81 GIn, Cys110AIa)ZnMb -7.2(5)•104s-1and 1.4(2)•105s-1, respectively- demonstrate that the placement of a highly polar residue nearby does not significantly change the reorganization energy of the photoactive Zn porphyrin.
The distal histidine imidazoles of (NH3)4isnRu-His48 SWMb and (NH3)5Ru-His48 SWMb were cyanated with BrCN. The intramolecular ET rates of these BrCN-modified Mb derivatives are 5.5(6)s-1 and 3.2(5)s-1, respectively. These respective rates are 20 and 10 times faster than those of their noncyanated counterparts after the differences in ET rate from driving force are scaled according to the Marcus equation. This increase in ET rate of the cyanated Mb derivatives is attributed to lower reorganization energy since the cyanated Mb heme is pentacoordinate in both oxidation states; whereas, the native Mb heme loses a water molecule upon reduction so that it changes from six to five coordinate. The reorganization energy from Fe-OH2 dissociation is estimated to be .2eV. This conclusion is used to reconcile data from previous experiments in our lab. ET in photoactive porphyrin-substituted myoglobins proceed faster than predicted by Marcus Theory when it is assumed that the only difference in ET parameters between photoactive porphyrins and native heme systems is driving force. However, the data can be consistently fit to Marcus Theory if one corrects for the smaller reorganization in the photoactive porphyrin systems since they do not undergo a coordination change upon ET.
Finally, the intramolecular ET rate of (NH3)4isnRu-His48 SWMb was measured to be 3.0(4)s-1. This rate is within experimental error of that for (NH3)4pyrRu-His48 SWMb even though the former has 80mV more driving force. One likely possibility for this observation is that the tetraamminepyridineruthenium group undergoes less reorganization upon ET than the tetraammineisonicotinamideruthenium group. Moreover, analysis of the (NH3)4isnRu-His48 SWMb experimental system gives a likely explanation of why ET was not observed previously in (NH3)4isnRu-Cytochrome C.
Resumo:
Immunoglobulin G (IgG) is central in mediating host defense due to its ability to target and eliminate invading pathogens. The fragment antigen binding (Fab) regions are responsible for antigen recognition; however the effector responses are encoded on the Fc region of IgG. IgG Fc displays considerable glycan heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Intravenous immunoglobulin G (IVIG) is pooled serum IgG from multiple donors and is used to treat individuals with autoimmune and inflammatory disorders such as rheumatoid arthritis and Kawasaki’s disease, respectively. It contains all the subtypes of IgG (IgG1-4) and over 120 glycovariants due to variation of an Asparagine 297-linked glycan on the Fc. The species identified as the activating component of IVIG is sialylated IgG Fc. Comparisons of wild type Fc and sialylated Fc X-ray crystal structures suggests that sialylation causes an increase in conformational flexibility, which may be important for its anti-inflammatory properties.
Although glycan modifications can promote the anti-inflammatory properties of the Fc, there are amino acid substitutions that cause Fcs to initiate an enhanced immune response. Mutations in the Fc can cause up to a 100-fold increase in binding affinity to activating Fc gamma receptors located on immune cells, and have been shown to enhance antibody dependent cell-mediated cytotoxicity. This is important in developing therapeutic antibodies against cancer and infectious diseases. Structural studies of mutant Fcs in complex with activating receptors gave insight into new protein-protein interactions that lead to an enhanced binding affinity.
Together these studies show how dynamic and diverse the Fc region is and how both protein and carbohydrate modifications can alter structure, leading to IgG Fc’s switch from a pro-inflammatory to an anti-inflammatory protein.
Resumo:
DNA charge transport (CT) involves the efficient transfer of electrons or electron holes through the DNA π-stack over long molecular distances of at least 100 base-pairs. Despite this shallow distance dependence, DNA CT is sensitive to mismatches or lesions that disrupt π-stacking and is critically dependent on proper electronic coupling of the donor and acceptor moieties into the base stack. Favorable DNA CT is very rapid, occurring on the picosecond timescale. Because of this speed, electron holes equilibrate along the DNA π-stack, forming a characteristic pattern of DNA damage at low oxidation potential guanine multiplets. Furthermore, DNA CT may be used in a biological context. DNA processing enzymes with 4Fe4S clusters can perform DNA-mediated electron transfer (ET) self-exchange reactions with other 4Fe4S cluster proteins, even if the proteins are quite dissimilar, as long as the DNA-bound [4Fe4S]3+/2+ redox potentials are conserved. This mechanism would allow low copy number DNA repair proteins to find their lesions efficiently within the cell. DNA CT may also be used biologically for the long-range, selective activation of redox-active transcription factors. Within this work, we pursue other proteins that may utilize DNA CT within the cell and further elucidate aspects of the DNA-mediated ET self-exchange reaction of 4Fe4S cluster proteins.
Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. One aspect of their protection involves ferroxidase activity, whereby ferrous iron is bound and oxidized selectively by hydrogen peroxide, thereby preventing formation of damaging hydroxyl radicals via Fenton chemistry. Understanding the specific mechanism by which Dps proteins protect the bacterial genome could inform the development of new antibiotics. We investigate whether DNA-binding E. coli Dps can utilize DNA CT to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate oxidative DNA damage via the flash-quench technique, which localizes to a low potential guanine triplet. We find that Dps loaded with ferrous iron, in contrast to Apo-Dps and ferric iron-loaded Dps which lack available reducing equivalents, significantly attenuates the yield of oxidative DNA damage at the guanine triplet. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill guanine radical holes, thereby restoring the integrity of the DNA. Luminescence studies indicate no direct interaction between the ruthenium photooxidant and Dps, supporting the DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA CT may be a mechanism by which Dps efficiently protects the genome of pathogenic bacteria from a distance.
Further work focused on spectroscopic characterization of the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation via the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, indicating that guanine radicals facilitate Dps oxidation. The more favorable oxidation of Dps by guanine radicals supports the feasibility of a long-distance protection mechanism via DNA CT where Dps is oxidized to fill guanine radical holes in the bacterial genome produced by reactive oxygen species.
We have also explored possible electron transfer intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the ferroxidase site (W52 in E. coli Dps). In comparison to WT Dps, in EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, W52Y and W52A mutants were deficient in forming the characteristic EPR signal at g = 4.3, with a larger deficiency for W52A compared to W52Y. In addition to EPR, we also probed the role of W52 Dps in cells using a hydrogen peroxide survival assay. Bacteria containing W52Y Dps survived the hydrogen peroxide challenge more similarly to those containing WT Dps, whereas cells with W52A Dps died off as quickly as cells without Dps. Overall, these results suggest the possibility of W52 as a CT hopping intermediate.
DNA-modified electrodes have become an essential tool for the study of the redox chemistry of DNA processing enzymes with 4Fe4S clusters. In many cases, it is necessary to investigate different complex samples and substrates in parallel in order to elucidate this chemistry. Therefore, we optimized and characterized a multiplexed electrochemical platform with the 4Fe4S cluster base excision repair glycosylase Endonuclease III (EndoIII). Closely packed DNA films, where the protein has limited surface accessibility, produce EndoIII electrochemical signals sensitive to an intervening mismatch, indicating a DNA-mediated process. Multiplexed analysis allowed more robust characterization of the CT-deficient Y82A EndoIII mutant, as well as comparison of a new family of mutations altering the electrostatics surrounding the 4Fe4S cluster in an effort to shift the reduction potential of the cluster. While little change in the DNA-bound midpoint potential was found for this family of mutants, likely indicating the dominant effect of DNA-binding on establishing the protein redox potential, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we proposed that the electron transfer pathway in EndoIII can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.
While the 4Fe4S cluster of EndoIII is relatively insensitive to oxidation and reduction in solution, we have found that upon DNA binding, the reduction potential of the [4Fe4S]3+/2+ couple shifts negatively by approximately 200 mV, bringing this couple into a physiologically relevant range. Demonstrated using electrochemistry experiments in the presence and absence of DNA, these studies do not provide direct molecular evidence for the species being observed. Sulfur K-edge X-ray absorbance spectroscopy (XAS) can be used to probe directly the covalency of iron-sulfur clusters, which is correlated to their reduction potential. We have shown that the Fe-S covalency of the 4Fe4S cluster of EndoIII increases upon DNA binding, stabilizing the oxidized [4Fe4S]3+ cluster, consistent with a negative shift in reduction potential. The 7% increase in Fe-S covalency corresponds to an approximately 150 mV shift, remarkably similar to DNA electrochemistry results. Therefore we have obtained direct molecular evidence for the shift in 4Fe4S reduction potential of EndoIII upon DNA binding, supporting the feasibility of our model whereby these proteins can utilize DNA CT to cooperate in order to efficiently find DNA lesions inside cells.
In conclusion, in this work we have explored the biological applications of DNA CT. We discovered that the DNA-binding bacterial ferritin Dps can protect the bacterial genome from a distance via DNA CT, perhaps contributing to pathogen survival and virulence. Furthermore, we optimized a multiplexed electrochemical platform for the study of the redox chemistry of DNA-bound 4Fe4S cluster proteins. Finally, we have used sulfur K-edge XAS to obtain direct molecular evidence for the negative shift in 4Fe4S cluster reduction potential of EndoIII upon DNA binding. These studies contribute to the understanding of DNA-mediated protein oxidation within cells.
Resumo:
DNA possesses the curious ability to conduct charge longitudinally through the π-stacked base pairs that reside within the interior of the double helix. The rate of charge transport (CT) through DNA has a shallow distance dependence. DNA CT can occur over at least 34 nm, a very long molecular distance. Lastly, DNA CT is exquisitely sensitive to disruptions, such as DNA damage, that affect the dynamics of base-pair stacking. Many DNA repair and DNA-processing enzymes are being found to contain 4Fe-4S clusters. These co-factors have been found in glycosylases, helicases, helicase-nucleases, and even enzymes such as DNA polymerase, RNA polymerase, and primase across the phylogeny. The role of these clusters in these enzymes has remained elusive. Generally, iron-sulfur clusters serve redox roles in nature since, formally, the cluster can exist in multiple oxidation states that can be accessed within a biological context. Taken together, these facts were used as a foundation for the hypothesis that DNA-binding proteins with 4Fe-4S clusters utilize DNA-mediated CT as a means to signal one another to scan the genome as a first step in locating the subtle damage that occurs within a sea of undamaged bases within cells.
Herein we describe a role for 4Fe-4S clusters in DNA-mediated charge transport signaling among EndoIII, MutY, and DinG, which are from distinct repair pathways in E. coli. The DinG helicase is an ATP-dependent helicase that contains a 4Fe-4S cluster. To study the DNA-bound redox properties of DinG, DNA-modified electrochemistry was used to show that the 4Fe-4S cluster of DNA-bound DinG is redox-active at cellular potentials, and shares the 80 mV vs. NHE redox potential of EndoIII and MutY. ATP hydrolysis by DinG increases the DNA-mediated redox signal observed electrochemically, likely reflecting better coupling of the 4Fe-4S cluster to DNA while DinG unwinds DNA, which could have interesting biological implications. Atomic force microscopy experiments demonstrate that DinG and EndoIII cooperate at long range using DNA charge transport to redistribute to regions of DNA damage. Genetics experiments, moreover, reveal that this DNA-mediated signaling among proteins also occurs within the cell and, remarkably, is required for cellular viability under conditions of stress. Knocking out DinG in CC104 cells leads to a decrease in MutY activity that is rescued by EndoIII D138A, but not EndoIII Y82A. DinG, thus, appears to help MutY find its substrate using DNA-mediated CT, but do MutY or EndoIII aid DinG in a similar way? The InvA strain of bacteria was used to observe DinG activity, since DinG activity is required within InvA to maintain normal growth. Silencing the gene encoding EndoIII in InvA results in a significant growth defect that is rescued by the overexpression of RNAseH, a protein that dismantles the substrate of DinG, R-loops. This establishes signaling between DinG and EndoIII. Furthermore, rescue of this growth defect by the expression of EndoIII D138A, the catalytically inactive but CT-proficient mutant of EndoIII, is also observed, but expression of EndoIII Y82A, which is CT-deficient but enzymatically active, does not rescue growth. These results provide strong evidence that DinG and EndoIII utilize DNA-mediated signaling to process DNA damage. This work thus expands the scope of DNA-mediated signaling within the cell, as it indicates that DNA-mediated signaling facilitates the activities of DNA repair enzymes across the genome, even for proteins from distinct repair pathways.
In separate work presented here, it is shown that the UvrC protein from E. coli contains a hitherto undiscovered 4Fe-4S cluster. A broad shoulder at 410 nm, characteristic of 4Fe-4S clusters, is observed in the UV-visible absorbance spectrum of UvrC. Electron paramagnetic resonance spectroscopy of UvrC incubated with sodium dithionite, reveals a spectrum with the signature features of a reduced, [4Fe-4S]+1, cluster. DNA-modified electrodes were used to show that UvrC has the same DNA-bound redox potential, of ~80 mV vs. NHE, as EndoIII, DinG, and MutY. Again, this means that these proteins are capable of performing inter-protein electron transfer reactions. Does UvrC use DNA-mediated signaling to facilitate the repair of its substrates?
UvrC is part of the nucleotide excision repair (NER) pathway in E. coli and is the protein within the pathway that performs the chemistry required to repair bulky DNA lesions, such as cyclopyrimidine dimers, that form as a product of UV irradiation. We tested if UvrC utilizes DNA-mediated signaling to facilitate the efficient repair of UV-induced DNA damage products by helping UvrC locate DNA damage. The UV sensitivity of E. coli cells lacking DinG, a putative signaling partner of UvrC, was examined. Knocking out DinG in E. coli leads to a sensitivity of the cells to UV irradiation. A 5-10 fold reduction in the amount of cells that survive after irradiation with 90 J/m2 of UV light is observed. This is consistent with the hypothesis that UvrC and DinG are signaling partners, but is this signaling due to DNA-mediated CT? Complementing the knockout cells with EndoIII D138A, which can also serve as a DNA CT signaling partner, rescues cells lacking DinG from UV irradiation, while complementing the cells with EndoIII Y82A shows no rescue of viability. These results indicate that there is cross-talk between the NER pathway and DinG via DNA-mediated signaling. Perhaps more importantly, this work also establishes that DinG, EndoIII, MutY, and UvrC comprise a signaling network that seems to be unified by the ability of these proteins to perform long range DNA-mediated CT signaling via their 4Fe-4S clusters.
Resumo:
The process of prophage integration by phage λ and the function and structure of the chromosomal elements required for λ integration have been studied with the use of λ deletion mutants. Since attφ, the substrate of the integration enzymes, is not essential for λ growth, and since attφ resides in a portion of the λ chromosome which is not necessary for vegetative growth, viable λ deletion mutants were isolated and examined to dissect the structure of attφ.
Deletion mutants were selected from wild type populations by treating the phage under conditions where phage are inactivated at a rate dependent on the DNA content of the particles. A number of deletion mutants were obtained in this way, and many of these mutants proved to have defects in integration. These defects were defined by analyzing the properties of Int-promoted recombination in these att mutants.
The types of mutants found and their properties indicated that attφ has three components: a cross-over point which is bordered on either side by recognition elements whose sequence is specifically required for normal integration. The interactions of the recognition elements in Int-promoted recombination between att mutants was examined and proved to be quite complex. In general, however, it appears that the λ integration system can function with a diverse array of mutant att sites.
The structure of attφ was examined by comparing the genetic properties of various att mutants with their location in the λ chromosome. To map these mutants, the techniques of heteroduplex DNA formation and electron microscopy were employed. It was found that integration cross-overs occur at only one point in attφ and that the recognition sequences that direct the integration enzymes to their site of action are quite small, less than 2000 nucleotides each. Furthermore, no base pair homology was detected between attφ and its bacterial analog, attB. This result clearly demonstrates that λ integration can occur between chromosomes which have little, if any, homology. In this respect, λ integration is unique as a system of recombination since most forms of generalized recombination require extensive base pair homology.
An additional study on the genetic and physical distances in the left arm of the λ genome was described. Here, a large number of conditional lethal nonsense mutants were isolated and mapped, and a genetic map of the entire left arm, comprising a total of 18 genes, was constructed. Four of these genes were discovered in this study. A series of λdg transducing phages was mapped by heteroduplex electron microscopy and the relationship between physical and genetic distances in the left arm was determined. The results indicate that recombination frequency in the left arm is an accurate reflection of physical distances, and moreover, there do not appear to be any undiscovered genes in this segment of the genome.
Resumo:
Part I: Synthesis of L-Amino Acid Oxidase by a Serine- or Glycine-Requiring Strain of Neurospora
Wild-type cultures of Neurospora crassa growing on minimal medium contain low levels of L-amino acid oxidase, tyrosinase, and nicotinarnide adenine dinucleotide glycohydrase (NADase). The enzymes are derepressed by starvation and by a number of other conditions which are inhibitory to growth. L-amino acid oxidase is, in addition, induced by growth on amino acids. A mutant which produces large quantities of both L-amino acid oxidase and NADase when growing on minimal medium was investigated. Constitutive synthesis of L-amino acid oxidase was shown to be inherited as a single gene, called P110, which is separable from constitutive synthesis of NADase. P110 maps near the centromere on linkage group IV.
L-amino acid oxidase produced constitutively by P110 was partially purified and compared to partially purified L-amino acid oxidase produced by derepressed wild-type cultures. The enzymes are identical with respect to thermostability and molecular weight as judged by gel filtration.
The mutant P110 was shown to be an incompletely blocked auxotroph which requires serine or glycine. None of the enzymes involved in the synthesis of serine from 3-phosphoglyceric acid or glyceric acid was found to be deficient in the mutant, however. An investigation of the free intracellular amino acid pools of P110 indicated that the mutant is deficient in serine, glycine, and alanine, and accumulates threonine and homoserine.
The relationship between the amino acid requirement of P110 and its synthesis of L-amino acid oxidase is discussed.
Part II: Studies Concerning Multiple Electrophoretic Forms of Tyrosinase in Neurospora
Supernumerary bands shown by some crude tyrosinase preparations in paper electrophoresis were investigated. Genetic analysis indicated that the location of the extra bands is determined by the particular T allele present. The presence of supernumerary bands varies with the method used to derepress tyrosinase production, and with the duration of derepression. The extra bands are unstable and may convert to the major electrophoretic band, suggesting that they result from modification of a single protein. Attempts to isolate the supernumerary bands by continuous flow paper electrophoresis or density gradient zonal electrophoresis were unsuccessful.
Resumo:
I. Studies on Nicotinamide Adenine Dinucleotide Glycohydrase (NADase)
NADase, like tyrosinase and L-amino acid oxidase, is not present in two day old cultures of wild type Neurospora, but it is coinduced with those two enzymes during starvation in phosphate buffer. The induction of NADase, like tyrosinase, is inhibited by puromycin. The induction of all three enzymes is inhibited by actinomycin D. These results suggest that NADase is synthesized de novo during induction as has been shown directly for tyrosinase. NADase induction differs in being inhibited by certain amino acids.
The tyrosinaseless mutant ty-1 contains a non-dialyzable, heat labile inhibitor of NADase. A new mutant, P110A, synthesizes NADase and L-amino acid oxidase while growing. A second strain, pe, fl;cot, makes NADase while growing. Both strains can be induced to make the other enzymes. These two strains prove that the control of these three enzymes is divisible. The strain P110A makes NADase even when grown in the presence of Tween 80. The synthesis of both NADase and L-amino acid oxidase by P110A is suppressed by complete medium. The theory of control of the synthesis of the enzymes is discussed.
II. Studies with EDTA
Neurospora tyrosinase contains copper but, unlike other phenol oxidases, this copper has never been removed reversibly. It was thought that the apo-enzyme might be made in vivo in the absence of copper. Therefore cultures were treated with EDTA to remove copper before the enzyme was induced. Although no apo-tyrosinase was detected, new information on the induction process was obtained.
A treatment of Neurospora with 0.5% EDTA pH 7, inhibits the subsequent induction during starvation in phosphate buffer of tyrosinase, L-amino acid oxidase and NADase. The inhibition of tyrosinase and L-amino acid oxidase induction is completely reversed by adding 5 x 10-5M CaCl2, 5 x 10-4M CuSO4, and a mixture of L-amino acids (2 x 10-3M each) to the buffer. Tyrosinase induction is also fully restored by 5 x 10-4M CaCl2 and amino acids. As yet NADase has been only partially restored.
The copper probably acts by sequestering EDTA left in the mycelium and may be replaced by nickel. The EDTA apparently removes some calcium from the mycelium, which the added calcium replaces. Magnesium cannot replace calcium. The amino acids probably replace endogenous amino acids lost to the buffer after the EDTA treatment.
The EDTA treatment also increases permeability, thereby increasing the sensitivity of induction to inhibition by actinomycin D and allowing cell contents to be lost to the induction buffer. EDTA treatment also inhibits the uptake of exogenous amino acids and their incorporation into proteins.
The lag period that precedes the first appearance of tyrosinase is demonstrated to be a separate dynamic phase of induction. It requires oxygen. It is inhibited by EDTA, but can be completed after EDTA treatment in the presence of 5 x 10-5M CaCl2 alone, although no tyrosinase is synthesized under these conditions.
The time course of induction has an early exponential phase suggesting an autocatalytic mechanism of induction.
The mode of action of EDTA, the process of induction and the kinetics of induction are discussed.
Resumo:
Huntington’s disease (HD) is a fatal autosomal dominant neurodegenerative disease. HD has no cure, and patients pass away 10-20 years after the onset of symptoms. The causal mutation for HD is a trinucleotide repeat expansion in exon 1 of the huntingtin gene that leads to a polyglutamine (polyQ) repeat expansion in the N-terminal region of the huntingtin protein. Interestingly, there is a threshold of 37 polyQ repeats under which little or no disease exists; and above which, patients invariably show symptoms of HD. The huntingtin protein is a 350 kDa protein with unclear function. As the polyQ stretch expands, its propensity to aggregate increases with polyQ length. Models for polyQ toxicity include formation of aggregates that recruit and sequester essential cellular proteins, or altered function producing improper interactions between mutant huntingtin and other proteins. In both models, soluble expanded polyQ may be an intermediate state that can be targeted by potential therapeutics.
In the first study described herein, the conformation of soluble, expanded polyQ was determined to be linear and extended using equilibrium gel filtration and small-angle X-ray scattering. While attempts to purify and crystallize domains of the huntingtin protein were unsuccessful, the aggregation of huntingtin exon 1 was investigated using other biochemical techniques including dynamic light scattering, turbidity analysis, Congo red staining, and thioflavin T fluorescence. Chapter 4 describes crystallization experiments sent to the International Space Station and determination of the X-ray crystal structure of the anti-polyQ Fab MW1. In the final study, multimeric fibronectin type III (FN3) domain proteins were engineered to bind with high avidity to expanded polyQ tracts in mutant huntingtin exon 1. Surface plasmon resonance was used to observe binding of monomeric and multimeric FN3 proteins with huntingtin.
Resumo:
The distal half of the bacteriophage T4 tail fiber interacts with the surface of the bacterium during adsorption. The largest polypeptide in this half fiber is the product of gene 37 (P37). During assembly of the tail fiber, P37 interacts with the product of gene 38 (P38). These two gene products are incompatible with the corresponding gene products from the related phage T2. T2 P37 does not interact with T4 P38 and T2 P38 does not interact with T4 P37. Crosses between T2 and T4 phages mutant in genes 37 and 38 have shown that the carboxyl end of P37 interacts with P38 and with the bacterial surface. In the corresponding region of gene 37 and in gene 38 there is no recombination between T2 and T4. In the rest of gene 37 there are two small regions with relatively high recombination and a region of low recombination.
When T2/T4 heteroduplex DNA molecules are examined in the electron microscope four nonhomologous loops appear in the region of genes 37 and 38. Heteroduplexes between hybrid phages which have part of gene 37 from T4 and part from T2 have roughly located gene 37 mutations in the heteroduplex pattern. For a more precise location of the , mutations a physical map of gene 37 was constructed by determining the molecular weights of amber polypeptide fragments on polyacrylamide gels in the presence of sodium dodecyl sulfate. When the physical and heteroduplex maps are aligned, the regions of low recombination correspond to regions of nonhomology between T2 and T4. Regions with relatively high recombination are homologous.
The molecular weight of T2 P37 is about 13,000 greater than that of T4 P37. Analysis of hybrid phage has shown that this molecular weight difference is all at the carboxyl end of P37.
An antiserum has been prepared which is specific for the distal half fiber of T4. Tests of the ability of gene 37 hybrids to block this antiserum show that there are at least 4 subclasses of antigen specified by different parts of P37.
Observations in the electron microscope of the tailfiber - anti- body complexes formed by the gene 37 hybrids and the specific anti- serum have shown that P37 is oriented linearly in the distal half fiber with its N-terminus near the joint between the two half fibers and its C-terminus near the tip of the fiber. These observations lead to a simple model for the structure of the distal half fiber.
The high recombination in T4 gene 34 was also investigated. A comparison of genetic and physical maps of gene 34 showed that there is a gradient of increasing recombination near one end of the gene.
Resumo:
Three mutants of Drosophila melanogaster have been isolated in which the free-running period of the circadian eclosion rhythm and the adult locomotor activity rhythm is affected. One mutant is arrhythmic, another has a short period of 19 hours, and the third has a long period of 28 hours. The mutants retain their phenotypes over the temperature range 18° to 25° C. All three mutants map near the tip of the X chromosome (distal to the centromere). By deficiency mapping, the short-period mutation has been localized to the 3B1-2 region. Complementation tests show that all three mutations affect the same functional gene.
Analysis of activity rhythms of individual mosaic flies indicates that the site of action of the short-period mutation is probably located in the head of the fly. A few activity patterns of split-head and mixed-head mosaics appear to possess both mutant and heterozygous components, suggesting that the fly head may contain two complete clocks capable of maintaining their periodicities independently.
The short-period mutation affects both the duration of the light-insensitive part of the oscillation and the degree to which the clock can be reset during the light-sensitive part of the oscillation.
Both the short-period and long-period mutant eclosion rhythms can be entrained to a period of 24 hours by a 12:12 light-dark cycle having a light intensity at least two orders of magnitude greater than that required to entrain the normal rhythm. The arrhythmic mutant does not entrain under these conditions. In the presence of a temperature cycle, however, the arrhythmic mutant does entrain, but its rhythm damps out when the temperature cycle is removed.
Evidence is presented that Pittendrigh's two-oscillator model for the clock in D. pseudoobscura applies to D. melanogaster as well. The three clock mutations primarily affect the light- sensitive driving oscillator. The arrhythmic mutation appears to have eliminated the driving oscillator while leaving the temperature-sensitive driven oscillator relatively intact.