25 resultados para Second-Order Recurrence Relations
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.
Resumo:
Experimental measurements of rate of energy loss were made for protons of energy .5 to 1.6 MeV channeling through 1 μm thick silicon targets along the <110>, <111>, and <211> axial directions, and the {100}, {110}, {111}, and {211} planar directions. A .05% resolution automatically controlled magnetic spectrometer was used. The data are presented graphically along with an extensive summary of data in the literature. The data taken cover a wider range of channels than has previously been examined, and are in agreement with the data of F. Eisen, et al., Radd. Eff. 13, 93 (1972).
The theory in the literature for channeling energy loss due to interaction with local electrons, core electrons, and distant valence electrons of the crystal atoms is summarized. Straggling is analyzed, and a computer program which calculates energy loss and straggling using this theory and the Moliere approximation to the Thomas Fermi potential, VTF, and the detailed silicon crystal structure is described. Values for the local electron density Zloc in each of the channels listed above are extracted from the data by graphical matching of the experimental and computer results.
Zeroth and second order contributions to Zloc as a function of distance from the center of the channel were computed from ∇2VTF = 4πρ for various channels in silicon. For data taken in this work and data of F. Eisen, et al., Rad. Eff. 13, 93 (1972), the calculated zeroth order contribution to Zloc lies between the experimentally extracted Zloc values obtained by using the peak and the leading edge of the transmission spectra, suggesting that the observed straggling is due both to statistical fluctuations and to path variation.
Resumo:
The important features of the two-dimensional incompressible turbulent flow over a wavy surface of wavelength comparable with the boundary layer thickness are analyzed.
A turbulent field method using model equation for turbulent shear stress similar to the scheme of Bradshaw, Ferriss and Atwell (1967) is employed with suitable modification to cover the viscous sublayer. The governing differential equations are linearized based on the small but finite amplitude to wavelength ratio. An orthogonal wavy coordinate system, accurate to the second order in the amplitude ratio, is adopted to avoid the severe restriction to the validity of linearization due to the large mean velocity gradient near the wall. Analytic solution up to the second order is obtained by using the method of matched-asymptotic-expansion based on the large Reynolds number and hence the small skin friction coefficient.
In the outer part of the layer, the perturbed flow is practically "inviscid." Solutions for the velocity, Reynolds stress and also the wall pressure distributions agree well with the experimental measurement. In the wall region where the perturbed Reynolds stress plays an important role in the process of momentum transport, only a qualitative agreement is obtained. The results also show that the nonlinear second-order effect is negligible for amplitude ratio of 0.03. The discrepancies in the detailed structure of the velocity, shear stress, and skin friction distributions near the wall suggest modifications to the model are required to describe the present problem.
Resumo:
The problem motivating this investigation is that of pure axisymmetric torsion of an elastic shell of revolution. The analysis is carried out within the framework of the three-dimensional linear theory of elastic equilibrium for homogeneous, isotropic solids. The objective is the rigorous estimation of errors involved in the use of approximations based on thin shell theory.
The underlying boundary value problem is one of Neumann type for a second order elliptic operator. A systematic procedure for constructing pointwise estimates for the solution and its first derivatives is given for a general class of second-order elliptic boundary-value problems which includes the torsion problem as a special case.
The method used here rests on the construction of “energy inequalities” and on the subsequent deduction of pointwise estimates from the energy inequalities. This method removes certain drawbacks characteristic of pointwise estimates derived in some investigations of related areas.
Special interest is directed towards thin shells of constant thickness. The method enables us to estimate the error involved in a stress analysis in which the exact solution is replaced by an approximate one, and thus provides us with a means of assessing the quality of approximate solutions for axisymmetric torsion of thin shells.
Finally, the results of the present study are applied to the stress analysis of a circular cylindrical shell, and the quality of stress estimates derived here and those from a previous related publication are discussed.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.
Resumo:
The present work deals with the problem of the interaction of the electromagnetic radiation with a statistical distribution of nonmagnetic dielectric particles immersed in an infinite homogeneous isotropic, non-magnetic medium. The wavelength of the incident radiation can be less, equal or greater than the linear dimension of a particle. The distance between any two particles is several wavelengths. A single particle in the absence of the others is assumed to scatter like a Rayleigh-Gans particle, i.e. interaction between the volume elements (self-interaction) is neglected. The interaction of the particles is taken into account (multiple scattering) and conditions are set up for the case of a lossless medium which guarantee that the multiple scattering contribution is more important than the self-interaction one. These conditions relate the wavelength λ and the linear dimensions of a particle a and of the region occupied by the particles D. It is found that for constant λ/a, D is proportional to λ and that |Δχ|, where Δχ is the difference in the dielectric susceptibilities between particle and medium, has to lie within a certain range.
The total scattering field is obtained as a series the several terms of which represent the corresponding multiple scattering orders. The first term is a single scattering term. The ensemble average of the total scattering intensity is then obtained as a series which does not involve terms due to products between terms of different orders. Thus the waves corresponding to different orders are independent and their Stokes parameters add.
The second and third order intensity terms are explicitly computed. The method used suggests a general approach for computing any order. It is found that in general the first order scattering intensity pattern (or phase function) peaks in the forward direction Θ = 0. The second order tends to smooth out the pattern giving a maximum in the Θ = π/2 direction and minima in the Θ = 0 , Θ = π directions. This ceases to be true if ka (where k = 2π/λ) becomes large (> 20). For large ka the forward direction is further enhanced. Similar features are expected from the higher orders even though the critical value of ka may increase with the order.
The first order polarization of the scattered wave is determined. The ensemble average of the Stokes parameters of the scattered wave is explicitly computed for the second order. A similar method can be applied for any order. It is found that the polarization of the scattered wave depends on the polarization of the incident wave. If the latter is elliptically polarized then the first order scattered wave is elliptically polarized, but in the Θ = π/2 direction is linearly polarized. If the incident wave is circularly polarized the first order scattered wave is elliptically polarized except for the directions Θ = π/2 (linearly polarized) and Θ = 0, π (circularly polarized). The handedness of the Θ = 0 wave is the same as that of the incident whereas the handedness of the Θ = π wave is opposite. If the incident wave is linearly polarized the first order scattered wave is also linearly polarized. The second order makes the total scattered wave to be elliptically polarized for any Θ no matter what the incident wave is. However, the handedness of the total scattered wave is not altered by the second order. Higher orders have similar effects as the second order.
If the medium is lossy the general approach employed for the lossless case is still valid. Only the algebra increases in complexity. It is found that the results of the lossless case are insensitive in the first order of kimD where kim = imaginary part of the wave vector k and D a linear characteristic dimension of the region occupied by the particles. Thus moderately extended regions and small losses make (kimD)2 ≪ 1 and the lossy character of the medium does not alter the results of the lossless case. In general the presence of the losses tends to reduce the forward scattering.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.
Resumo:
The thermal reaction between nitrogen dioxide and acetaldehyde in the gas phase was investigated at room temperature and atmospheric pressure. The initial rate of disappearance of nitrogen dioxide was 1.00 ± 0.03 order with respect to nitrogen dioxide and 1.00 ± 0.07 order with respect to acetaldehyde. An initial second order rate constant of (8.596 ± 0.189) x 10-3 1.mole-1 sec-1 was obtained at 22.0 ± 0.1 °C and a total pressure of one atmosphere. The activation energy of the reaction was 12,900 cal/mole in the temperature range between 22°C and 122°C.
The products of the reaction were nitric oxide, carbon dioxide, methyl nitrite, nitromethane and a trace amount of trans-dimeric nitrosomethane. The addition of nitric oxide increased the rate of formation of nitromethane and decreased the rate of formation of methyl nitrite. There were no measurable surface effects due to the addition of glass wool or glass beads to the reactor.
Reactants and products were analyzed by gas chromatography. A mechanism was proposed incorporating the principal features of the reaction.
Resumo:
A large array has been used to investigate the P-wave velocity structure of the lower mantle. Linear array processing methods are reviewed and a method of nonlinear processing is presented. Phase velocities, travel times, and relative amplitudes of P waves have been measured with the large array at the Tonto Forest Seismological Observatory in Arizona for 125 earthquakes in the distance range of 30 to 100 degrees. Various models are assumed for the upper 771 km of the mantle and the Wiechert-Herglotz method applied to the phase velocity data to obtain a velocity depth structure for the lower mantle. The phase velocity data indicates the presence of a second-order discontinuity at a depth of 840 km, another at 1150 km, and less pronounced discontinuities at 1320, 1700 and 1950 km. Phase velocities beyond 85 degrees are interpreted in terms of a triplication of the phase velocity curve, and this results in a zone of almost constant velocity between depths of 2670 and 2800 km. Because of the uncertainty in the upper mantle assumptions, a final model cannot be proposed, but it appears that the lower mantle is more complicated than the standard models and there is good evidence for second-order discontinuities below a depth of 1000 km. A tentative lower bound of 2881 km can be placed on the depth to the core. The importance of checking the calculated velocity structure against independently measured travel times is pointed out. Comparisons are also made with observed PcP times and the agreement is good. The method of using measured values of the rate of change of amplitude with distances shows promising results.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.