17 resultados para Prime-boost
Resumo:
If E and F are saturated formations, we say that E is strongly contained in F if for any solvable group G with E-subgroup, E, and F-subgroup, F, some conjugate of E is contained in F. In this paper, we investigate the problem of finding the formations which strongly contain a fixed saturated formation E.
Our main results are restricted to formations, E, such that E = {G|G/F(G) ϵT}, where T is a non-empty formation of solvable groups, and F(G) is the Fitting subgroup of G. If T consists only of the identity, then E=N, the class of nilpotent groups, and for any solvable group, G, the N-subgroups of G are the Carter subgroups of G.
We give a characterization of strong containment which depends only on the formations E, and F. From this characterization, we prove:
If T is a non-empty formation of solvable groups, E = {G|G/F(G) ϵT}, and E is strongly contained in F, then
(1) there is a formation V such that F = {G|G/F(G) ϵV}.
(2) If for each prime p, we assume that T does not contain the class, Sp’, of all solvable p’-groups, then either E = F, or F contains all solvable groups.
This solves the problem for the Carter subgroups.
We prove the following result to show that the hypothesis of (2) is not redundant:
If R = {G|G/F(G) ϵSr’}, then there are infinitely many formations which strongly contain R.
Resumo:
Suppose that AG is a solvable group with normal subgroup G where (|A|, |G|) = 1. Assume that A is a class two odd p group all of whose irreducible representations are isomorphic to subgroups of extra special p groups. If pc ≠ rd + 1 for any c = 1, 2 and any prime r where r2d+1 divides |G| and if CG(A) = 1 then the Fitting length of G is bounded by the power of p dividing |A|.
The theorem is proved by applying a fixed point theorem to a reduction of the Fitting series of G. The fixed point theorem is proved by reducing a minimal counter example. IF R is an extra spec r subgroup of G fixed by A1, a subgroup of A, where A1 centralizes D(R), then all irreducible characters of A1R which are nontrivial on Z(R) are computed. All nonlinear characters of a class two p group are computed.