36 resultados para Perturbation methods
Resumo:
In the quest for a descriptive theory of decision-making, the rational actor model in economics imposes rather unrealistic expectations and abilities on human decision makers. The further we move from idealized scenarios, such as perfectly competitive markets, and ambitiously extend the reach of the theory to describe everyday decision making situations, the less sense these assumptions make. Behavioural economics has instead proposed models based on assumptions that are more psychologically realistic, with the aim of gaining more precision and descriptive power. Increased psychological realism, however, comes at the cost of a greater number of parameters and model complexity. Now there are a plethora of models, based on different assumptions, applicable in differing contextual settings, and selecting the right model to use tends to be an ad-hoc process. In this thesis, we develop optimal experimental design methods and evaluate different behavioral theories against evidence from lab and field experiments.
We look at evidence from controlled laboratory experiments. Subjects are presented with choices between monetary gambles or lotteries. Different decision-making theories evaluate the choices differently and would make distinct predictions about the subjects' choices. Theories whose predictions are inconsistent with the actual choices can be systematically eliminated. Behavioural theories can have multiple parameters requiring complex experimental designs with a very large number of possible choice tests. This imposes computational and economic constraints on using classical experimental design methods. We develop a methodology of adaptive tests: Bayesian Rapid Optimal Adaptive Designs (BROAD) that sequentially chooses the "most informative" test at each stage, and based on the response updates its posterior beliefs over the theories, which informs the next most informative test to run. BROAD utilizes the Equivalent Class Edge Cutting (EC2) criteria to select tests. We prove that the EC2 criteria is adaptively submodular, which allows us to prove theoretical guarantees against the Bayes-optimal testing sequence even in the presence of noisy responses. In simulated ground-truth experiments, we find that the EC2 criteria recovers the true hypotheses with significantly fewer tests than more widely used criteria such as Information Gain and Generalized Binary Search. We show, theoretically as well as experimentally, that surprisingly these popular criteria can perform poorly in the presence of noise, or subject errors. Furthermore, we use the adaptive submodular property of EC2 to implement an accelerated greedy version of BROAD which leads to orders of magnitude speedup over other methods.
We use BROAD to perform two experiments. First, we compare the main classes of theories for decision-making under risk, namely: expected value, prospect theory, constant relative risk aversion (CRRA) and moments models. Subjects are given an initial endowment, and sequentially presented choices between two lotteries, with the possibility of losses. The lotteries are selected using BROAD, and 57 subjects from Caltech and UCLA are incentivized by randomly realizing one of the lotteries chosen. Aggregate posterior probabilities over the theories show limited evidence in favour of CRRA and moments' models. Classifying the subjects into types showed that most subjects are described by prospect theory, followed by expected value. Adaptive experimental design raises the possibility that subjects could engage in strategic manipulation, i.e. subjects could mask their true preferences and choose differently in order to obtain more favourable tests in later rounds thereby increasing their payoffs. We pay close attention to this problem; strategic manipulation is ruled out since it is infeasible in practice, and also since we do not find any signatures of it in our data.
In the second experiment, we compare the main theories of time preference: exponential discounting, hyperbolic discounting, "present bias" models: quasi-hyperbolic (α, β) discounting and fixed cost discounting, and generalized-hyperbolic discounting. 40 subjects from UCLA were given choices between 2 options: a smaller but more immediate payoff versus a larger but later payoff. We found very limited evidence for present bias models and hyperbolic discounting, and most subjects were classified as generalized hyperbolic discounting types, followed by exponential discounting.
In these models the passage of time is linear. We instead consider a psychological model where the perception of time is subjective. We prove that when the biological (subjective) time is positively dependent, it gives rise to hyperbolic discounting and temporal choice inconsistency.
We also test the predictions of behavioral theories in the "wild". We pay attention to prospect theory, which emerged as the dominant theory in our lab experiments of risky choice. Loss aversion and reference dependence predicts that consumers will behave in a uniquely distinct way than the standard rational model predicts. Specifically, loss aversion predicts that when an item is being offered at a discount, the demand for it will be greater than that explained by its price elasticity. Even more importantly, when the item is no longer discounted, demand for its close substitute would increase excessively. We tested this prediction using a discrete choice model with loss-averse utility function on data from a large eCommerce retailer. Not only did we identify loss aversion, but we also found that the effect decreased with consumers' experience. We outline the policy implications that consumer loss aversion entails, and strategies for competitive pricing.
In future work, BROAD can be widely applicable for testing different behavioural models, e.g. in social preference and game theory, and in different contextual settings. Additional measurements beyond choice data, including biological measurements such as skin conductance, can be used to more rapidly eliminate hypothesis and speed up model comparison. Discrete choice models also provide a framework for testing behavioural models with field data, and encourage combined lab-field experiments.
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.
Resumo:
The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.
In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.
This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.
The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.
The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.
Resumo:
A new approach to magnetic resonance was introduced in 1992 based upon detection of spin-induced forces by J. Sidles [1]. This technique, now called magnetic resonance force microscopy (MRFM), was first demonstrated that same year via electron paramagnetic resonance (EPR) by D. Rugar et al. [2]. This new method combines principles of magnetic resonance with those of scanned probe technology to detect spin resonance through mechanical, rather than inductive, means. In this thesis the development and use of ferromagnetic resonance force microscopy (FMRFM) is described. This variant of MRFM, which allows investigation of ferromagnetic samples, was first demonstrated in 1996 by Z. Zhang et al. [3]. FMRFM enables characterization of (a) the dynamic magnetic properties of microscale magnetic devices, and (b) the spatial dependence of ferromagnetic resonance within a sample. Both are impossible with conventional ferromagnetic resonance techniques.
Ferromagnetically coupled systems, however, pose unique challenges for force detection. In this thesis the attainable spatial resolution - and the underlying physical mechanisms that determine it - are established. We analyze the dependence of the magnetostatic modes upon sample dimensions using a series of microscale yttrium iron garnet (YIG) samples. Mapping of mode amplitudes within these sample is attained with an unprecedented spatial resolution of 15μm. The modes, never before analyzed on this scale, fit simple models developed in this thesis for samples of micron dimensions. The application of stronger gradient fields induces localized perturbation of the ferromagnetic resonance modes. The first demonstrations of this effect are presented in this study, and a simple theoretical model is developed to explain our observations. The results indicate that the characteristics of the locally-detected ferromagnetic modes are still largely determined by the external fields and dimensions of the entire sample, rather than by the localized interaction volume (i.e., the locale most strongly affected by the local gradient field). Establishing this is a crucial first step toward understanding FMRFM in the high gradient field limit where the dispersion relations become locally determined. In this high gradient field regime, FMRFM imaging becomes analogous with that of EPR MRFM.
FMRFM has also been employed to characterize magnetic multilayers, similar to those utilized in giant magnetoresistance (GMR) devices, on a lateral scale 40 x 40μm. This is orders of magnitude smaller than possible via conventional methods. Anisotropy energies, thickness, and interface qualities of individual layers have been resolved.
This initial work clearly demonstrates the immense and unique potential that FMRFM offers for characterizing advanced magnetic nanostructures and magnetic devices.
Resumo:
The problem of finding the depths of glaciers and the current methods are discussed briefly. Radar methods are suggested as a possible improvement for, or adjunct to, seismic and gravity survey methods. The feasibility of propagating electromagnetic waves in ice and the maximum range to be expected are then investigated theoretically with the aid of experimental data on the dielectric properties of ice. It is found that the maximum expected range is great enough to measure the depth of many glaciers at the lower radar frequencies if there is not too much liquid water present. Greater ranges can be attained by going to lower frequencies.
The results are given of two expeditions in two different years to the Seward Glacier in the Yukon Territory. Experiments were conducted on a small valley glacier whose depth was determined by seismic sounding. Many echoes were received but their identification was uncertain. Using the best echoes, a profile was obtained each year, but they were not in exact agreement with each other. It could not be definitely established that echoes had been received from bedrock. Agreement with seismic methods for a considerable number of glaciers would have to be obtained before radar methods could be relied upon. The presence of liquid water in the ice is believed to be one of the greatest obstacles. Besides increasing the attenuation and possibly reflecting energy, it makes it impossible to predict the velocity of propagation. The equipment used was far from adequate for such purposes, so many of the difficulties could be attributed to this. Partly because of this, and the fact that there are glaciers with very little liquid water present, radar methods are believed to be worthy of further research for the exploration of glaciers.
Resumo:
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly.
We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments.
We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion.
We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.
Resumo:
We develop a method for performing one-loop calculations in finite systems that is based on using the WKB approximation for the high energy states. This approximation allows us to absorb all the counterterms analytically and thereby avoids the need for extreme numerical precision that was required by previous methods. In addition, the local approximation makes this method well suited for self-consistent calculations. We then discuss the application of relativistic mean field methods to the atomic nucleus. Self-consistent, one loop calculations in the Walecka model are performed and the role of the vacuum in this model is analyzed. This model predicts that vacuum polarization effects are responsible for up to five percent of the local nucleon density. Within this framework the possible role of strangeness degrees of freedom is studied. We find that strangeness polarization can increase the kaon-nucleus scattering cross section by ten percent. By introducing a cutoff into the model, the dependence of the model on short-distance physics, where its validity is doubtful, is calculated. The model is very sensitive to cutoffs around one GeV.
Resumo:
A hydromechanical theory is developed for cycloidal propellers for two limiting modes of operation wherein U » ΩR and U « ΩR, with U the rectilinear propeller speed (speed of advance) and ΩR the rotational blade speed. A first order theory is developed from the basic principles of the kinematics and dynamics of fluid motion and proceeds from the point of view of unsteady hydrofoil theory.
Explicit expressions for the instantaneous forces and moments produced by blade motions are presented. On the basis of these results an optimization procedure is carried out which minimizes the energy loss under the constraint of specified mean thrust. Under optimal conditions the propeller is found to possess high Froude efficiencies in both the high and low speed modes of propulsion. This efficiency is defined as the ratio of the average useful work obtained during one cycle of propeller operation to the average power input required to sustain the motion of the propeller during the cycle.
Resumo:
The high computational cost of correlated wavefunction theory (WFT) calculations has motivated the development of numerous methods to partition the description of large chemical systems into smaller subsystem calculations. For example, WFT-in-DFT embedding methods facilitate the partitioning of a system into two subsystems: a subsystem A that is treated using an accurate WFT method, and a subsystem B that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT) method. Representation of the interactions between subsystems is non-trivial, and often requires the use of approximate kinetic energy functionals or computationally challenging optimized effective potential calculations; however, it has recently been shown that these challenges can be eliminated through the use of a projection operator. This dissertation describes the development and application of embedding methods that enable accurate and efficient calculation of the properties of large chemical systems.
Chapter 1 introduces a method for efficiently performing projection-based WFT-in-DFT embedding calculations on large systems. This is accomplished by using a truncated basis set representation of the subsystem A wavefunction. We show that naive truncation of the basis set associated with subsystem A can lead to large numerical artifacts, and present an approach for systematically controlling these artifacts.
Chapter 2 describes the application of the projection-based embedding method to investigate the oxidative stability of lithium-ion batteries. We study the oxidation potentials of mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC) by using the projection-based embedding method to calculate the vertical ionization energy (IE) of individual molecules at the CCSD(T) level of theory, while explicitly accounting for the solvent using DFT. Interestingly, we reveal that large contributions to the solvation properties of DMC originate from quadrupolar interactions, resulting in a much larger solvent reorganization energy than that predicted using simple dielectric continuum models. Demonstration that the solvation properties of EC and DMC are governed by fundamentally different intermolecular interactions provides insight into key aspects of lithium-ion batteries, with relevance to electrolyte decomposition processes, solid-electrolyte interphase formation, and the local solvation environment of lithium cations.
Resumo:
Hopanoids are a class of sterol-like lipids produced by select bacteria. Their preservation in the rock record for billions of years as fossilized hopanes lends them geological significance. Much of the structural diversity present in this class of molecules, which likely underpins important biological functions, is lost during fossilization. Yet, one type of modification that persists during preservation is methylation at C-2. The resulting 2-methylhopanoids are prominent molecular fossils and have an intriguing pattern over time, exhibiting increases in abundance associated with Ocean Anoxic Events during the Phanerozoic. This thesis uses diverse methods to address what the presence of 2-methylhopanes tells us about the microbial life and environmental conditions of their ancient depositional settings. Through an environmental survey of hpnP, the gene encoding the C-2 hopanoid methylase, we found that many different taxa are capable of producing 2-methylhopanoids in more diverse modern environments than expected. This study also revealed that hpnP is significantly overrepresented in organisms that are plant symbionts, in environments associated with plants, and with metabolisms that support plant-microbe interactions; collectively, these correlations provide a clue about the biological importance of 2-methylhopanoids. Phylogenetic reconstruction of the evolutionary history of hpnP revealed that 2-methylhopanoid production arose in the Alphaproteobacteria, indicating that the origin of these molecules is younger than originally thought. Additionally, we took genetic approach to understand the role of 2-methylhopanoids in Cyanobacteria using the filamentous symbiotic Nostoc punctiforme. We found that hopanoids likely aid in rigidifying the cell membrane but do not appear to provide resistance to osmotic or outer membrane stressors, as has been shown in other organisms. The work presented in this thesis supports previous findings that 2-methylhopanoids are not biomarkers for oxygenic photosynthesis and provides new insights by defining their distribution in modern environments, identifying their evolutionary origin, and investigating their role in Cyanobacteria. These efforts in modern settings aid the formation of a robust interpretation of 2-methylhopanes in the rock record.
Resumo:
We investigated four unique methods for achieving scalable, deterministic integration of quantum emitters into ultra-high Q{V photonic crystal cavities, including selective area heteroepitaxy, engineered photoemission from silicon nanostructures, wafer bonding and dimensional reduction of III-V quantum wells, and cavity-enhanced optical trapping. In these areas, we were able to demonstrate site-selective heteroepitaxy, size-tunable photoluminescence from silicon nanostructures, Purcell modification of QW emission spectra, and limits of cavity-enhanced optical trapping designs which exceed any reports in the literature and suggest the feasibility of capturing- and detecting nanostructures with dimensions below 10 nm. In addition to process scalability and the requirement for achieving accurate spectral- and spatial overlap between the emitter and cavity, these techniques paid specific attention to the ability to separate the cavity and emitter material systems in order to allow optimal selection of these independently, and eventually enable monolithic integration with other photonic and electronic circuitry.
We also developed an analytic photonic crystal design process yielding optimized cavity tapers with minimal computational effort, and reported on a general cavity modification which exhibits improved fabrication tolerance by relying exclusively on positional- rather than dimensional tapering. We compared several experimental coupling techniques for device characterization. Significant efforts were devoted to optimizing cavity fabrication, including the use of atomic layer deposition to improve surface quality, exploration into factors affecting the design fracturing, and automated analysis of SEM images. Using optimized fabrication procedures, we experimentally demonstrated 1D photonic crystal nanobeam cavities exhibiting the highest Q/V reported on substrate. Finally, we analyzed the bistable behavior of the devices to quantify the nonlinear optical response of our cavities.
Resumo:
Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.
Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the coppercatalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-naseseazine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.
Resumo:
Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.
Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.
The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.
The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
The intent of this study is to provide formal apparatus which facilitates the investigation of problems in the methodology of science. The introduction contains several examples of such problems and motivates the subsequent formalism.
A general definition of a formal language is presented, and this definition is used to characterize an individual’s view of the world around him. A notion of empirical observation is developed which is independent of language. The interplay of formal language and observation is taken as the central theme. The process of science is conceived as the finding of that formal language that best expresses the available experimental evidence.
To characterize the manner in which a formal language imposes structure on its universe of discourse, the fundamental concepts of elements and states of a formal language are introduced. Using these, the notion of a basis for a formal language is developed as a collection of minimal states distinguishable within the language. The relation of these concepts to those of model theory is discussed.
An a priori probability defined on sets of observations is postulated as a reflection of an individual’s ontology. This probability, in conjunction with a formal language and a basis for that language, induces a subjective probability describing an individual’s conceptual view of admissible configurations of the universe. As a function of this subjective probability, and consequently of language, a measure of the informativeness of empirical observations is introduced and is shown to be intuitively plausible – particularly in the case of scientific experimentation.
The developed formalism is then systematically applied to the general problems presented in the introduction. The relationship of scientific theories to empirical observations is discussed and the need for certain tacit, unstatable knowledge is shown to be necessary to fully comprehend the meaning of realistic theories. The idea that many common concepts can be specified only by drawing on knowledge obtained from an infinite number of observations is presented, and the problems of reductionism are examined in this context.
A definition of when one formal language can be considered to be more expressive than another is presented, and the change in the informativeness of an observation as language changes is investigated. In this regard it is shown that the information inherent in an observation may decrease for a more expressive language.
The general problem of induction and its relation to the scientific method are discussed. Two hypotheses concerning an individual’s selection of an optimal language for a particular domain of discourse are presented and specific examples from the introduction are examined.