18 resultados para ORGAN PRESERVATION SOLUTIONS
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
Measurements of friction and heat transfer coefficients were obtained with dilute polymer solutions flowing through electrically heated smooth and rough tubes. The polymer used was "Polyox WSR-301", and tests were performed at concentrations of 10 and 50 parts per million. The rough tubes contained a close-packed, granular type of surface with roughness-height-to-diameter ratios of 0.0138 and 0.0488 respectively. A Prandtl number range of 4.38 to 10.3 was investigated which was obtained by adjusting the bulk temperature of the solution. The Reynolds numbers in the experiments were varied from =10,000 (Pr= 10.3) to 250,000 (Pr= 4.38).
Friction reductions as high as 73% in smooth tubes and 83% in rough tubes were observed, accompanied by an even more drastic heat transfer reduction (as high as 84% in smooth tubes and 93% in rough tubes). The heat transfer coefficients with Polyox can be lower for a rough tube than for a smooth one.
The similarity rules previously developed for heat transfer with a Newtonian fluid were extended to dilute polymer solution pipe flows. A velocity profile similar to the one proposed by Deissler was taken as a model to interpret the friction and heat transfer data in smooth tubes. It was found that the observed results could be explained by assuming that the turbulent diffusivities are reduced in smooth tubes in the vicinity of the wall, which brings about a thickening of the viscous layer. A possible mechanism describing the effect of the polymer additive on rough pipe flow is also discussed.
Resumo:
Hair cells from the bull frog's sacculus, a vestibular organ responding to substrate-borne vibration, possess electrically resonant membrane properties which maximize the sensitivity of each cell to a particular frequency of mechanical input. The electrical resonance of these cells and its underlying ionic basis were studied by applying gigohm-seal recording techniques to solitary hair cells enzymatically dissociated from the sacculus. The contribution of electrical resonance to frequency selectivity was assessed from microelectrode recordings from hair cells in an excised preparation of the sacculus.
Electrical resonance in the hair cell is demonstrated by damped membrane-potential oscillations in response to extrinsic current pulses applied through the recording pipette. This response is analyzed as that of a damped harmonic oscillator. Oscillation frequency rises with membrane depolarization, from 80-160 Hz at resting potential to asymptotic values of 200-250 Hz. The sharpness of electrical tuning, denoted by the electrical quality factor, Qe, is a bell-shaped function of membrane voltage, reaching a maximum value around eight at a membrane potential slightly positive to the resting potential.
In whole cells, three time-variant ionic currents are activated at voltages more positive than -60 to -50 mV; these are identified as a voltage-dependent, non-inactivating Ca current (Ica), a voltage-dependent, transient K current (Ia), and a Ca-dependent K current (Ic). The C channel is identified in excised, inside-out membrane patches on the basis of its large conductance (130-200 pS), its selective permeability to Kover Na or Cl, and its activation by internal Ca ions and membrane depolarization. Analysis of open- and closed-lifetime distributions suggests that the C channel can assume at least two open and three closed kinetic states.
Exposing hair cells to external solutions that inhibit the Ca or C conductances degrades the electrical resonance properties measured under current-clamp conditions, while blocking the A conductance has no significant effect, providing evidence that only the Ca and C conductances participate in the resonance mechanism. To test the sufficiency of these two conductances to account for electrical resonance, a mathematical model is developed that describes Ica, Ic, and intracellular Ca concentration during voltage-clamp steps. Ica activation is approximated by a third-order Hodgkin-Huxley kinetic scheme. Ca entering the cell is assumed to be confined to a small submembrane compartment which contains an excess of Ca buffer; Ca leaves this space with first-order kinetics. The Ca- and voltage-dependent activation of C channels is described by a five-state kinetic scheme suggested by the results of single-channel observations. Parameter values in the model are adjusted to fit the waveforms of Ica and Ic evoked by a series of voltage-clamp steps in a single cell. Having been thus constrained, the model correctly predicts the character of voltage oscillations produced by current-clamp steps, including the dependencies of oscillation frequency and Qe on membrane voltage. The model shows quantitatively how the Ca and C conductances interact, via changes in intracellular Ca concentration, to produce electrical resonance in a vertebrate hair cell.