17 resultados para Neutron probe
Resumo:
Described in this thesis are measurements made of the thick-target neutron yield from the reaction 13C(α, n)16O. The yield was determined for laboratory bombarding energies between 0.475 and 0.700 MeV, using a stilbene crystal neutron detector and pulse-shape discrimination to eliminate gamma rays. Stellar temperatures between 2.5 and 4.5 x 108 oK are involved in this energy region. From the neutron yield was extracted the astrophysical cross-section factor S(E), which was found to fit a linear function: S(E) = [(5.48 ± 1.77) + (12.05 ± 3.91)E] x 105 MeV-barns, center-of-mass system. The stellar rate of the 13C(α, n)16O reaction if calculated, and discussed with reference to helium burning and neutron production in the core of a giant star.
Results are also presented of measurements carried out on the reaction 9Be(α, n)12C, taken with a thin Be target. The bombarding energy-range covered was from 0.340 to 0.680 MeV, with excitation curves for the ground- and first excited-state neutrons being reported. Some angular distributions were also measured. Resonances were found at bombarding energies of ELAB = 0.520 MeV (ECM = 0.360 MeV, Γ ~ 55 keV CM, ωγ = 3.79 eV CM) and ELAB = 0.600 MeV (ECM = 0.415 MeV, Γ ˂ 4 keV CM, ωγ = 0.88 eV CM). The astrophysical rate of the 9Be(α, n)12C reaction due to these resonances is calculated.
Resumo:
Recent theoretical developments in the reggeization of inelastic processes involving particles with high spin are incorporated into a model of vector meson production. A number of features of experimental differential cross sections and density matrices are interpreted in terms of this model.
The method chosen for reggeization of helicity amplitudes first separates kinematic zeros and singularities from the parity-conserving amplitudes and then applies results of Freedman and Wang on daughter trajectories to the remaining factors. Kinematic constraints on helicity amplitudes at t = 0 and t = (M – MΔ)2 are also considered.
It is found that data for reactions of types πN→VN and πN→VΔ are consistent with a model of this type in which all kinematic constraints at t = 0 are satisfied by evasion (vanishing of residue functions). As a quantitative test of the parametrization, experimental differential cross sections of vector meson production reactions dominated by pion trajectory exchange are compared with the theory. It is found that reduced residue functions are approximately constant, once the kinematic behavior near t = (M – MΔ)2 has been removed.
The alternative possibility of conspiracy between amplitudes is also discussed; and it is shown that unless conspiracy is present, some amplitudes allowed by angular momentum conservation will not contribute with full strength in the forward direction. An example, γp→π+n in which the data for dσ/dt indicate conspiracy, is studied in detail.