19 resultados para Middle States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. PHOSPHORESCENCE AND THE TRUE LIFETIME OF TRIPLET STATES IN FLUID SOLUTIONS

Phosphorescence has been observed in a highly purified fluid solution of naphthalene in 3-methylpentane (3-MP). The phosphorescence lifetime of C10H8 in 3-MP at -45 °C was found to be 0.49 ± 0.07 sec, while that of C10D8 under identical conditions is 0.64 ± 0.07 sec. At this temperature 3-MP has the same viscosity (0.65 centipoise) as that of benzene at room temperature. It is believed that even these long lifetimes are dominated by impurity quenching mechanisms. Therefore it seems that the radiationless decay times of the lowest triplet states of simple aromatic hydrocarbons in liquid solutions are sensibly the same as those in the solid phase. A slight dependence of the phosphorescence lifetime on solvent viscosity was observed in the temperature region, -60° to -18°C. This has been attributed to the diffusion-controlled quenching of the triplet state by residual impurity, perhaps oxygen. Bimolecular depopulation of the triplet state was found to be of major importance over a large part of the triplet decay.

The lifetime of triplet C10H8 at room temperature was also measured in highly purified benzene by means of both phosphorescence and triplet-triplet absorption. The lifetime was estimated to be at least ten times shorter than that in 3-MP. This is believed to be due not only to residual impurities in the solvent but also to small amounts of impurities produced through unavoidable irradiation by the excitation source. In agreement with this idea, lifetime shortening caused by intense flashes of light is readily observed. This latter result suggests that experiments employing flash lamp techniques are not suitable for these kinds of studies.

The theory of radiationless transitions, based on Robinson's theory, is briefly outlined. A simple theoretical model which is derived from Fano's autoionization gives identical result.

Il. WHY IS CONDENSED OXYGEN BLUE?

The blue color of oxygen is mostly derived from double transitions. This paper presents a theoretical calculation of the intensity of the double transition (a 1Δg) (a 1Δg)←(X 3Σg-) (X 3Σg-), using a model based on a pair of oxygen molecules at a fixed separation of 3.81 Å. The intensity enhancement is assumed to be derived from the mixing (a 1Δg) (a 1Δg) ~~~ (X 3Σg-) (X 3Σu-) and (a 1Δg) (1Δu) ~~~ (X 3Σg-) (X 3Σg-). Matrix elements for these interactions are calculated using a π-electron approximation for the pair system. Good molecular wavefunctions are used for all but the perturbing (B 3Σu-) state, which is approximated in terms of ground state orbitals. The largest contribution to the matrix elements arises from large intramolecular terms multiplied by intermolecular overlap integrals. The strength of interaction depends not only on the intermolecular separation of the two oxygen molecules, but also as expected on the relative orientation. Matrix elements are calculated for different orientations, and the angular dependence is fit to an analytical expression. The theory therefore not only predicts an intensity dependence on density but also one on phase at constant density. Agreement between theory and available experimental results is satisfactory considering the nature of the approximation, and indicates the essential validity of the overall approach to this interesting intensity enhancement problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of intermolecular coupling in molecular energy levels (electronic and vibrational) has been investigated in neat and isotopic mixed crystals of benzene. In the isotopic mixed crystals of C6H6, C6H5D, m-C6H4D2, p-C6H4D2, sym-C6H3D3, C6D5H, and C6D6 in either a C6H6 or C6D6 host, the following phenomena have been observed and interpreted in terms of a refined Frenkel exciton theory: a) Site shifts; b) site group splittings of the degenerate ground state vibrations of C6H6, C6D6, and sym-C6H3D3; c) the orientational effect for the isotopes without a trigonal axis in both the 1B2u electronic state and the ground state vibrations; d) intrasite Fermi resonance between molecular fundamentals due to the reduced symmetry of the crystal site; and e) intermolecular or intersite Fermi resonance between nearly degenerate states of the host and guest molecules. In the neat crystal experiments on the ground state vibrations it was possible to observe many of these phenomena in conjunction with and in addition to the exciton structure.

To theoretically interpret these diverse experimental data, the concepts of interchange symmetry, the ideal mixed crystal, and site wave functions have been developed and are presented in detail. In the interpretation of the exciton data the relative signs of the intermolecular coupling constants have been emphasized, and in the limit of the ideal mixed crystal a technique is discussed for locating the exciton band center or unobserved exciton components. A differentiation between static and dynamic interactions is made in the Frenkel limit which enables the concepts of site effects and exciton coupling to be sharpened. It is thus possible to treat the crystal induced effects in such a fashion as to make their similarities and differences quite apparent.

A calculation of the ground state vibrational phenomena (site shifts and splittings, orientational effects, and exciton structure) and of the crystal lattice modes has been carried out for these systems. This calculation serves as a test of the approximations of first order Frenkel theory and the atom-atom, pair wise interaction model for the intermolecular potentials. The general form of the potential employed was V(r) = Be-Cr - A/r6 ; the force constants were obtained from the potential by assuming the atoms were undergoing simple harmonic motion.

In part II the location and identification of the benzene first and second triplet states (3B1u and 3E1u) is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model potential is used to calculate Rydberg series for the molecules: nitrogen, oxygen, nitric oxide, carbon monoxide, carbon dioxide, nitrogen dioxide, nitrous oxide, acetylene, formaldehyde, formic acid, diazomethane, ketene, ethylene, allene, acetaldehyde, propyne, acrolein, dimethyl ether, 1, 3-butadiene, 2-butene, and benzene. The model potential for a molecule is taken as the sum of atomic potentials, which are calibrated to atomic data and contain no further parameters. Our results agree with experimentally measured values to within 5-10% in all cases. The results of these calculations are applied to many unresolved problems connected with the above molecules. Some of the more notable of these problems are the reassignment of states in carbon monoxide, the first ionization potential of nitrogen dioxide, the interpretation of the V state in ethylene, and the mystery bands in substituted ethylenes, the identification of the R and R’ series in benzene and the determination of the orbital scheme in benzene from electron impact data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.

The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.

Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.