40 resultados para MOMENTUM
Resumo:
This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.
Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.
Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.
All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.
Resumo:
Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject.
Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods.
We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures.
To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties.
These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.
Resumo:
Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.
The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.
Resumo:
The spin dependent cross sections, σT1/2 and σT3/2 , and asymmetries, A∥ and A⊥ for 3He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process 3He(e,e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gerasimov-Drell-Hearn integral is presented at a 4-momentum transfer Q2 of 0.2-1.0 GeV2.
Also presented are results on the performance of the polarized 3He target. Polarization of 3He was achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The 3He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Resumo:
The purpose of this work is to extend experimental and theoretical understanding of horizontal Bloch line (HBL) motion in magnetic bubble materials. The present theory of HBL motion is reviewed, and then extended to include transient effects in which the internal domain wall structure changes with time. This is accomplished by numerically solving the equations of motion for the internal azimuthal angle ɸ and the wall position q as functions of z, the coordinate perpendicular to the thin-film material, and time. The effects of HBL's on domain wall motion are investigated by comparing results from wall oscillation experiments with those from the theory. In these experiments, a bias field pulse is used to make a step change in equilibrium position of either bubble or stripe domain walls, and the wall response is measured by using transient photography. During the initial response, the dynamic wall structure closely resembles the initial static structure. The wall accelerates to a relatively high velocity (≈20 m/sec), resulting in a short (≈22 nsec ) section of initial rapid motion. An HBL gradually forms near one of the film surfaces as a result of local dynamic properties, and moves along the wall surface toward the film center. The presence of this structure produces low-frequency, triangular-shaped oscillations in which the experimental wall velocity is nearly constant, vs≈ 5-8 m/sec. If the HBL reaches the opposite surface, i.e., if the average internal angle reaches an integer multiple of π, the momentum stored in the HBL is lost, and the wall chirality is reversed. This results in abrupt transitions to overdamped motion and changes in wall chirality, which are observed as a function of bias pulse amplitude. The pulse amplitude at which the nth punch- through occurs just as the wall reaches equilibrium is given within 0.2 0e by Hn = (2vsH'/γ)1/2 • (nπ)1/2 + Hsv), where H' is the effective field gradient from the surrounding domains, and Hsv is a small (less than 0.03 0e), effective drag field. Observations of wall oscillation in the presence of in-plane fields parallel to the wall show that HBL formation is suppressed by fields greater than about 40 0e (≈2πMs), resulting in the high-frequency, sinusoidal oscillations associated with a simple internal wall structure.
Resumo:
While some of the deepest results in nature are those that give explicit bounds between important physical quantities, some of the most intriguing and celebrated of such bounds come from fields where there is still a great deal of disagreement and confusion regarding even the most fundamental aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as to whether the limitations associated with Heisenberg's Uncertainty Principle derive from an inherent randomness in physics, or rather from limitations in the measurement process itself, resulting from phenomena like back action. Likewise, the second law of thermodynamics makes a statement regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-accepted definition of equilibrium, nor an adequate explanation of how a system with underlying microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution.
Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use dynamical systems theory to investigate how the very simplest of systems, even with no physical constraints, are characterized by bounds that give limits to the ability to make measurements on them. Using an existing interpretation, we start by examining how dissipative systems can be viewed as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation result plays a central role in a measurement model that we examine, in particular describing how noise is inevitably injected into a system during a measurement, noise that can be viewed as originating either from the randomness of the many degrees of freedom of the measurement device, or of the environment. This noise constitutes one component of measurement back action, and ultimately imposes limits on measurement uncertainty. Depending on the assumptions we make about active devices, and their limitations, this back action can be offset to varying degrees via control. It turns out that using active devices to reduce measurement back action leads to estimation problems that have non-zero uncertainty lower bounds, the most interesting of which arise when the observed system is lossless. One such lower bound, a main contribution of this work, can be viewed as a classical version of a Heisenberg uncertainty relation between the system's position and momentum. We finally also revisit the murky question of how macroscopic dissipation appears from lossless dynamics, and propose alternative approaches for framing the question using existing systematic methods of model reduction.
Resumo:
Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).
In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.
In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.
The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.
Resumo:
This thesis advances our understanding of midlatitude storm tracks and how they respond to perturbations in the climate system. The midlatitude storm tracks are regions of maximal turbulent kinetic energy in the atmosphere. Through them, the bulk of the atmospheric transport of energy, water vapor, and angular momentum occurs in midlatitudes. Therefore, they are important regulators of climate, controlling basic features such as the distribution of surface temperatures, precipitation, and winds in midlatitudes. Storm tracks are robustly projected to shift poleward in global-warming simulations with current climate models. Yet the reasons for this shift have remained unclear. Here we show that this shift occurs even in extremely idealized (but still three-dimensional) simulations of dry atmospheres. We use these simulations to develop an understanding of the processes responsible for the shift and develop a conceptual model that accounts for it.
We demonstrate that changes in the convective static stability in the deep tropics alone can drive remote shifts in the midlatitude storm tracks. Through simulations with a dry idealized general circulation model (GCM), midlatitude storm tracks are shown to be located where the mean available potential energy (MAPE, a measure of the potential energy available to be converted into kinetic energy) is maximal. As the climate varies, even if only driven by tropical static stability changes, the MAPE maximum shifts primarily because of shifts of the maximum of near-surface meridional temperature gradients. The temperature gradients shift in response to changes in the width of the tropical Hadley circulation, whose width is affected by the tropical static stability. Storm tracks generally shift in tandem with shifts of the subtropical terminus of the Hadley circulation.
We develop a one-dimensional diffusive energy-balance model that links changes in the Hadley circulation to midlatitude temperature gradients and so to the storm tracks. It is the first conceptual model to incorporate a dynamical coupling between the tropical Hadley circulation and midlatitude turbulent energy transport. Numerical and analytical solutions of the model elucidate the circumstances of when and how the storm tracks shift in tandem with the terminus of the Hadley circulation. They illustrate how an increase of only the convective static stability in the deep tropics can lead to an expansion of the Hadley circulation and a poleward shift of storm tracks.
The simulations with the idealized GCM and the conceptual energy-balance model demonstrate a clear link between Hadley circulation dynamics and midlatitude storm track position. With the help of the hierarchy of models presented in this thesis, we obtain a closed theory of storm track shifts in dry climates. The relevance of this theory for more realistic moist climates is discussed.
Resumo:
In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.
In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.
Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.
Resumo:
Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.
The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.
Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.
Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.
Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.
Resumo:
Ordered granular systems have been a subject of active research for decades. Due to their rich dynamic response and nonlinearity, ordered granular systems have been suggested for several applications, such as solitary wave focusing, acoustic signals manipulation, and vibration absorption. Most of the fundamental research performed on ordered granular systems has focused on macro-scale examples. However, most engineering applications require these systems to operate at much smaller scales. Very little is known about the response of micro-scale granular systems, primarily because of the difficulties in realizing reliable and quantitative experiments, which originate from the discrete nature of granular materials and their highly nonlinear inter-particle contact forces.
In this work, we investigate the physics of ordered micro-granular systems by designing an innovative experimental platform that allows us to assemble, excite, and characterize ordered micro-granular systems. This new experimental platform employs a laser system to deliver impulses with controlled momentum and incorporates non-contact measurement apparatuses to detect the particles’ displacement and velocity. We demonstrated the capability of the laser system to excite systems of dry (stainless steel particles of radius 150 micrometers) and wet (silica particles of radius 3.69 micrometers, immersed in fluid) micro-particles, after which we analyzed the stress propagation through these systems.
We derived the equations of motion governing the dynamic response of dry and wet particles on a substrate, which we then validated in experiments. We then measured the losses in these systems and characterized the collision and friction between two micro-particles. We studied wave propagation in one-dimensional dry chains of micro-particles as well as in two-dimensional colloidal systems immersed in fluid. We investigated the influence of defects to wave propagation in the one-dimensional systems. Finally, we characterized the wave-attenuation and its relation to the viscosity of the surrounding fluid and performed computer simulations to establish a model that captures the observed response.
The findings of the study offer the first systematic experimental and numerical analysis of wave propagation through ordered systems of micro-particles. The experimental system designed in this work provides the necessary tools for further fundamental studies of wave propagation in both granular and colloidal systems.
Resumo:
̄pp backward elastic scattering has been measured for the cos θcm region between – 1.00 and – 0.88 and for the incident ̄p laboratory momentum region between 0.70 and 2.37 GeV/c. These measurements, done in intervals of approximately 0.1 GeV/c, have been performed at the Alternating Gradient Synchrotron at Brookhaven National Laboratory during the winter of 1968. The measured differential cross sections, binned in cos θcm intervals of 0.02, have statistical errors of about 10%. Backward dipping exists below 0.95 GeV/c and backward peaking above 0.95 GeV/c. The 180˚ differential cross section extrapolated from our data shows a sharp dip centered at 0.95 GeV/c and a broad hump centered near 1.4 GeV/c. Our data have been interpreted in terms of resonance effects and in terms of diffraction dominance effects.
Resumo:
The effect on the scattering amplitude of the existence of a pole in the angular momentum plane near J = 1 in the channel with the quantum numbers of the vacuum is calculated. This is then compared with a fourth order calculation of the scattering of neutral vector mesons from a fermion pair field in the limit of large momentum transfer. The presence of the third double spectral function in the perturbation amplitude complicates the identification of pole trajectory parameters, and the limitations of previous methods of treating this are discussed. A gauge invariant scheme for extracting the contribution of the vacuum trajectory is presented which gives agreement with unitarity predictions, but further calculations must be done to determine the position and slope of the trajectory at s = 0. The residual portion of the amplitude is compared with the Gribov singularity.
Resumo:
The important features of the two-dimensional incompressible turbulent flow over a wavy surface of wavelength comparable with the boundary layer thickness are analyzed.
A turbulent field method using model equation for turbulent shear stress similar to the scheme of Bradshaw, Ferriss and Atwell (1967) is employed with suitable modification to cover the viscous sublayer. The governing differential equations are linearized based on the small but finite amplitude to wavelength ratio. An orthogonal wavy coordinate system, accurate to the second order in the amplitude ratio, is adopted to avoid the severe restriction to the validity of linearization due to the large mean velocity gradient near the wall. Analytic solution up to the second order is obtained by using the method of matched-asymptotic-expansion based on the large Reynolds number and hence the small skin friction coefficient.
In the outer part of the layer, the perturbed flow is practically "inviscid." Solutions for the velocity, Reynolds stress and also the wall pressure distributions agree well with the experimental measurement. In the wall region where the perturbed Reynolds stress plays an important role in the process of momentum transport, only a qualitative agreement is obtained. The results also show that the nonlinear second-order effect is negligible for amplitude ratio of 0.03. The discrepancies in the detailed structure of the velocity, shear stress, and skin friction distributions near the wall suggest modifications to the model are required to describe the present problem.