24 resultados para Jet formation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.

In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.

Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces.

We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms.

When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface.

In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and successfully detected the high frequency magnetic fluctuations of broadband whistler waves associated with the fast reconnection. The magnetic fluctuations exhibit power-law spectra. The magnetic components of single-frequency whistler waves are found to be circularly polarized regardless of the angle between the wave propagation direction and the background magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, an RF coupled, atmospheric pressure, laminar plasma jet of argon was investigated for thermodynamic equilibrium and some rate processes.

Improved values of transition probabilities for 17 lines of argon I were developed from known values for 7 lines. The effect of inhomogeneity of the source was pointed out.

The temperatures, T, and the electron densities, ne , were determined spectroscopically from the population densities of the higher excited states assuming the Saha-Boltzmann relationship to be valid for these states. The axial velocities, vz, were measured by tracing the paths of particles of boron nitride using a three-dimentional mapping technique. The above quantities varied in the following ranges: 1012 ˂ ne ˂ 1015 particles/cm3, 3500 ˂ T ˂ 11000 °K, and 200 ˂ vz ˂ 1200 cm/sec.

The absence of excitation equilibrium for the lower excitation population including the ground state under certain conditions of T and ne was established and the departure from equilibrium was examined quantitatively. The ground state was shown to be highly underpopulated for the decaying plasma.

Rates of recombination between electrons and ions were obtained by solving the steady-state equation of continuity for electrons. The observed rates were consistent with a dissociative-molecular ion mechanism with a steady-state assumption for the molecular ions.

In the second part of the study, decomposition of NO was studied in the plasma at lower temperatures. The mole fractions of NO denoted by xNO were determined gas-chromatographically and varied between 0.0012 ˂ xNO ˂ 0.0055. The temperatures were measured pyrometrically and varied between 1300 ˂ T ˂ 1750°K. The observed rates of decomposition were orders of magnitude greater than those obtained by the previous workers under purely thermal reaction conditions. The overall activation energy was about 9 kcal/g mol which was considerably lower than the value under thermal conditions. The effect of excess nitrogen was to reduce the rate of decomposition of NO and to increase the order of the reaction with respect to NO from 1.33 to 1.85. The observed rates were consistent with a chain mechanism in which atomic nitrogen and oxygen act as chain carriers. The increased rates of decomposition and the reduced activation energy in the presence of the plasma could be explained on the basis of the observed large amount of atomic nitrogen which was probably formed as the result of reactions between excited atoms and ions of argon and the molecular nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several new ligand platforms designed to support iron dinitrogen chemistry have been developed. First, we report Fe complexes of a tris(phosphino)alkyl (CPiPr3) ligand featuring an axial carbon donor intended to conceptually model the interstitial carbide atom of the nitrogenase iron-molybdenum cofactor (FeMoco). It is established that in this scaffold, the iron center binds dinitrogen trans to the Calkyl anchor in three structurally characterized oxidation states. Fe-Calkyl lengthening is observed upon reduction, reflective of significant ionic character in the Fe-Calkyl interaction. The anionic (CPiPr3)FeN2- species can be functionalized by a silyl electrophile to generate (CPiPr3)Fe-N2SiR3. This species also functions as a modest catalyst for the reduction of N2 to NH3. Next, we introduce a new binucleating ligand scaffold that supports an Fe(μ-SAr)Fe diiron subunit that coordinates dinitrogen (N2-Fe(μ-SAr)Fe-N2) across at least three oxidation states (FeIIFeII, FeIIFeI, and FeIFeI). Despite the sulfur-rich coordination environment of iron in FeMoco, synthetic examples of transition metal model complexes that bind N2 and also feature sulfur donor ligands remain scarce; these complexes thus represent an unusual series of low-valent diiron complexes featuring thiolate and dinitrogen ligands. The (N2-Fe(μ-SAr)Fe-N2) system undergoes reduction of the bound N2 to produce NH3 (~50% yield) and can efficiently catalyze the disproportionation of N2H4 to NH3 and N2. The present scaffold also supports dinitrogen binding concomitant with hydride as a co-ligand. Next, inspired by the importance of secondary-sphere interactions in many metalloenzymes, we present complexes of iron in two new ligand scaffolds ([SiPNMe3] and [SiPiPr2PNMe]) that incorporate hydrogen-bond acceptors (tertiary amines) which engage in interactions with nitrogenous substrates bound to the iron center (NH3 and N2H4). Cation binding is also facilitated in anionic Fe(0)-N2 complexes. While Fe-N2 complexes of a related ligand ([SiPiPr3]) lacking hydrogen-bond acceptors produce a substantial amount of ammonia when treated with acid and reductant, the presence of the pendant amines instead facilitates the formation of metal hydride species.

Additionally, we present the development and mechanistic study of copper-mediated and copper-catalyzed photoinduced C-N bond forming reactions. Irradiation of a copper-amido complex, ((m-tol)3P)2Cu(carbazolide), in the presence of aryl halides furnishes N-phenylcarbazole under mild conditions. The mechanism likely proceeds via single-electron transfer from an excited state of the copper complex to the aryl halide, generating an aryl radical. An array of experimental data are consistent with a radical intermediate, including a cyclization/stereochemical investigation and a reactivity study, providing the first substantial experimental support for the viability of a radical pathway for Ullmann C-N bond formation. The copper complex can also be used as a precatalyst for Ullmann C-N couplings. We also disclose further study of catalytic Calkyl-N couplings using a CuI precatalyst, and discuss the likely role of [Cu(carbazolide)2]- and [Cu(carbazolide)3]- species as intermediates in these reactions.

Finally, we report a series of four-coordinate, pseudotetrahedral P3FeII-X complexes supported by tris(phosphine)borate ([PhBP3FeR]-) and phosphiniminato X-type ligands (-N=PR'3) that in combination tune the spin-crossover behavior of the system. Low-coordinate transition metal complexes such as these that undergo reversible spin-crossover remain rare, and the spin equilibria of these systems have been studied in detail by a suite of spectroscopic techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to determine the properties of the bicycloheptatrienyl anion (Ia) (predicted to be conjugatively stabilized by Hückel Molecular Orbital Theory) the neutral precursor, bicyclo[3. 2. 0] hepta-1, 4, 6-triene (I) was prepared by the following route.

Reaction of I with potassium-t-butoxide, potassium, or lithium dicyclohexylamide gave anion Ia in very low yield. Reprotonation of I was found to occur solely at the 1 or 5 position to give triene II, isolated as to its dimers.

A study of the acidity of I and of other conjugated hydrocarbons by means of ion cyclotron resonance spectroscopy resulted in determination of the following order of relative acidities:

H2S ˃ C5H6 ˃ CH3NO2 ˃ 1, 4- C5H8 ˃ I ˃ C2H5OH ˃ H2O; cyclo-C7H8 ˃ C2 H5OH; фCH3 ˃ CH3OH

In addition, limits for the proton affinities of the conjugate bases were determined:

350 kcal/mole ˂ PA(C5 H5-) ˂ 360 kcal/mole

362 kcal/mole ˂ PA(C5H7-, Ia, cyclo-C7H7-) ˂ 377 kcal/mole PA(фCH2-) ˂ 385 kcal/mole

Gas phase kinetics of the trans-XVIII to I transformation gave the following activation parameters: Ea = 43.0 kcal/mole, log A = 15.53 and ∆Sǂ (220°) = 9.6 cu. The results were interpreted as indicating initial 1,2 bond cleavage to give the 1,3-diradical which closed to I. Similar studies on cis-XVIII gave results consistent with a surface component to the reaction (Ea = 22.7 kcal/mole; log A = 9.23, ∆Sǂ (119°) = -18.9 eu).

The low pressure (0.01 to 1 torr) pyrolysis of trans-XVIII gave in addition to I, fulvenallene (LV), ethynylcyclopentadiene (LVI) and heptafulvalene (LVII). The relative ratios of the C7H6 isomers were found to be dependent upon temperature and pressure, higher relative pressure and lower temperatures favoring formation of I. The results were found to be consistent with the intermediacy of vibrationally excited I and subsequent reaction to give LV and LVI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution to the magnetic uniaxial perpendicular anisotropy which arises from substrate constraint through magnetostrictive effects has been measured in Ni-Fe and Ni-Co thin films evaporated on substrates at room temperature. This was accomplished by measuring the perpendicular anisotropy before and after removal of the film from the substrate. Data are given for the fcc crystal structure regions of both alloy systems, but data for Ni-Co include compositions with less than 60% Ni which have a small percentage of the hcp phase mixed with the fcc phase. The constraint contribution to the perpendicular anisotropy correlates well with the value of the bulk magnetostriction constant using the equation ∆K˔=3/2λsσ. Measured values of isotropic stress for films thicker than 600 Å were 1.6 x 1010 dyn/cm2. In films less than 600 Å thick the isotropic stress decreased with decreasing thickness. After removal of the films from the substrates, the measured perpendicular anisotropy deviated from the expected geometrical shape anisotropy near pure Ni in both alloys. This indicates that additional significant sources of anisotropy exist at these compositions.

The effect of substrate constraint on the crystalline anisotropy K1 of Ni-Fe epitaxial films has been studied by use of a film removal technique, which involves the evaporation of an epitaxial layer of LiF on MgO, the epitaxial growth of the metallic film on the LiF, and the stripping of the film with water soluble tape. Films ranging in composition from 50% to 100% Ni have been studied. For compositions below 90% Ni the experimental values agree reasonably well with the first order theoretical prediction, ∆K1=[-9/4(C11-C122 100+9/2C44λ2111].

In order to compare the magnetic properties of epitaxial thin films more completely with the properties of bulk single crystals, Ni-Fe films ranging in composition from 60% to 90% Ni, which were evaporated epitaxially on (100) MgO substrates, have been subsequently annealed at 400°C in a vacuum of less than 10-7 Torr to form the ordered Ni3Fe structure near the 75% composition. This ordered structure has been confirmed by electron diffraction.

The saturation magnetization at Ni3Fe increased about 6% with ordering which is in good agreement with previous bulk data. Measurements of the magnetocrystalline anisotropy energy K1 for the epitaxial films show the same large changes with ordering as observed in bulk single crystal samples. In the (001) plane the magnetostriction constants λ100, λ111 are directly related to the induced anisotropy due to a uniform uniaxial strain in the [100] and [110] directions respectively. Assuming that the elastic constants of a film are the same as in bulk material and are unchanged by ordering, the changes in strain sensitivity with ordering for the epitaxial films are found to be in good agreement with values predicted from bulk data. The exchange constant A as measured by ferromagnetic resonance has been measured at the Ni3Fe composition and found to increase 25% with ordering. This seems to indicate a significant increase in the Curie temperature which has only been inferred indirectly for bulk material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unit activity was recorded from the midbrain and pons of 40 freely moving rats in an appetitive classical conditioning situation. Responses to auditory stimuli were observed from 100 units before and during a conditioning procedure in which presentation of food occurred 1 sec after the onset of the auditory stimulus. Conditioned unit responses (i.e., spike rate accelerations or decelerations) were considered to be positive when 1) no similar responses appeared prior to conditioning, and 2) latencies were equal to or less than those of sensory responses derived from the inferior colliculus. Such short latency conditioned unit responses were recorded from 11 probes located in the mid-lateral pert of the ventral region of the brain stem. This region was differentiated from paramedian, far lateral and dorsal parts of the brain stem reticular formation. Conditioned unit responses of considerably longer latencies were recorded from 76 probe located in these other regions. Among the longer latency responses interesting differences appeared in experiments conducted after the first conditioning series was completed. With additional training, units in the "reticular activating system" of midbrain and pons tended to yield stabilized responses in the early portion of the CS-US interval closely related in time to the orientation responses evoked by the CS. In contrast, the responses of units in the limbic midbrain tended to stabilize in the later part of the CS-US interval closely related in time to preparatory responses tied to the US. During extinction when the auditory stimulus was no longer followed by presentation of food, many of the responses were reduced to their pre-conditioning levels. However, there was a tendency for units which had displayed short latency responses on the first conditioning day to be more resistant to extinction than units which had displayed longer latency conditioned responses. The data were interpreted as indicating a local correlate of learning in the reticular formation of midbrain end pons and a separation of the midbrain system into at least two areas: 1) the classical "reticular activating system" related to orienting reactions, and 2) the limbic midbrain areas related to drives and rewards. Because the ventral and mid-lateral area with very short latency conditioned responses was not clearly tied to either of these; it was considered as possibly representing a third division.