20 resultados para Electromagnetic Fields, Fluxes.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1.7- and 2.43-MeV levels in 9Be were populated with the reaction 11B(d, α)9Be* by bombarding thin boron on carbon foils with 1.7-MeV deuterons. The alpha particles were analyzed in energy with a surface-barrier counter set at the unique kinematically determined angle and the recoiling 9Be nuclei at 90o were analyzed in rigidity with a magnetic spectrometer, in energy by a surface-barrier counter at the spectrometer focus, and in velocity by the time delay between an alpha and a 9Be count. When a pulse from the spectrometer counter was in the appropriate delayed coincidence with a pulse from the alpha counter, the two pulses were recorded in a two-dimensional pulse height analyzer. Most of the 9Be* decay by particle breakup. Only those that gamma decay are detected by the spectrometer counter. Thus the experiment provides a direct measurement of Γrad/Γ. Analysis of 384 observed events gives Γrad/Γ = (1.16 ± 0.14) X 10-4 for the 2.43-MeV level. Combining this ratio with the value of Γrad = 0.122 ± 0.015 eV found from inelastic electron scattering gives Γ = (1.05 ± 0.18) keV. For the 1.7-MeV level, an upper limit, Γrad/Γ ≤ 2.4 = 10-5, was determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution of the so-called thermodynamic paradox is presented in this paper. It is shown, in direct contradiction to the results of several previously published papers, that the cutoff modes (evanescent modes having complex propagation constants) can carry power in a waveguide containing ferrite. The errors in all previous “proofs” which purport to show that the cutoff modes cannot carry power are uncovered. The boundary value problem underlying the paradox is studied in detail; it is shown that, although the solution is somewhat complicated, there is nothing paradoxical about it.

The general problem of electromagnetic wave propagation through rectangular guides filled inhomogeneously in cross-section with transversely magnetized ferrite is also studied. Application of the standard waveguide techniques reduces the TM part to the well-known self-adjoint Sturm Liouville eigenvalue equation. The TE part, however, leads in general to a non-self-adjoint eigenvalue equation. This equation and the associated expansion problem are studied in detail. Expansion coefficients and actual fields are determined for a particular problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is developed for calculating the electromagnetic field scattered by certain types of bodies. The bodies consist of inhomogeneous media whose constitutive parameters vary only with the distance from some axis or point of symmetry. The method consists in an extension of the invariant imbedding method for treating wave problems. This method, which is familiar in the case of a one-dimensional inhomogeneity, is extended to handle special types of two and three-dimensional inhomogeneities. Comparisons are made with other methods which have been proposed for treating these kinds of problems. Examples of applications of the method are given, some of which are of interest in themselves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is developed for the design of lenses for transitioning TEM waves between conical and/or cylindrical transmission lines, ideally with no reflection or distortion of the waves. These lenses utilize isotropic but inhomogeneous media and are based on a solution of Maxwell's equations instead of just geometrical optics. The technique employs the expression of the constitutive parameters, ɛ and μ, plus Maxwell's equations, in a general orthogonal curvilinear coordinate system in tensor form, giving what we term as formal quantities. Solving the problem for certain types of formal constitutive parameters, these are transformed to give ɛ and μ as functions of position. Several examples of such lenses are considered in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.