20 resultados para ENDOTHELIUM-DEPENDENT RELAXATION
Resumo:
Studies on the dissociation of histones from chromatin by increasing concentrations of sodium deoxycholate (DOC) have shown that histrone II is removed at lowest concentrations of DOC, while slightly higher concentrations remove histones III and IV. Still higher concentrations remove histone I.
The complete separation of chromatin and 14C-DOC by sucrose sedimentation indicated that the binding of DOC to chromatin is readily and completely reversible.
The dissociation of histones from chromatin by increasing concentrations of related cholanic acids and some of their conjugated derivatives were studied. The results suggested that the driving force for the interaction between the cholanic acid anion and histones is the lowering of the activity coefficient of the cholanic acid anion which occurs when it is partially removed from solution by interaction with hydrophobic regions of the positively charged histones.
The role of histones in the structure of chromatin has been studied by comparing the effects of selective removal of histones from chromatin by increasing concentrations of DOC with those caused by NaCl (removes histone I at lowest concentrations, while higher concentrations remove histones II, III, and IV). Properties studied included thermal denaturation, sedimentation velocity, flow dichroism, relaxation times of molecules oriented in a flow field, and the irreversible disruption of a 130 S, cross-linked component of sheared chromatin. The data indicated that none of the structural or chemical parameters with which these properties are correlated show a dependence on the presence of one particular histone fraction.
The template activity (ability to prime a 0.2 M KC1 DNA-dependent RNA synthesis system catalyzed by E. coli RNA polymerase) increases from that of native chromatin (approximately 25 per cent of that pure DNA) to that of pure DNA in a fashion which shows a nearly linear relationship to the amount of histone coverage of the template. The precipitability of partially dehistonized chromatin samples in 0.15 M NaCl shows a large dependence on the presence of histone I.
Resumo:
The stability of a fluid having a non-uniform temperature stratification is examined analytically for the response of infinitesimal disturbances. The growth rates of disturbances have been established for a semi-infinite fluid for Rayleigh numbers of 103, 104, and 105 and for Prandtl numbers of 7.0 and 0.7.
The critical Rayleigh number for a semi-infinite fluid, based on the effective fluid depth, is found to be 32, while it is shown that for a finite fluid layer the critical Rayleigh number depends on the rate of heating. The minimum critical Rayleigh number, based on the depth of a fluid layer, is found to be 1340.
The stability of a finite fluid layer is examined for two special forms of heating. The first is constant flux heating, while in the second, the temperature of the lower surface is increased uniformly in time. In both cases, it is shown that for moderate rates of heating the critical Rayleigh number is reduced, over the value for very slow heating, while for very rapid heating the critical Rayleigh number is greatly increased. These results agree with published experimental observations.
The question of steady, non-cellular convection is given qualitative consideration. It is concluded that, although the motion may originate from infinitesimal disturbances during non-uniform heating, the final flow field is intrinsically non-linear.
Resumo:
An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.
The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.
The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.
This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
The field of plasmonics exploits the unique optical properties of metallic nanostructures to concentrate and manipulate light at subwavelength length scales. Metallic nanostructures get their unique properties from their ability to support surface plasmons– coherent wave-like oscillations of the free electrons at the interface between a conductive and dielectric medium. Recent advancements in the ability to fabricate metallic nanostructures with subwavelength length scales have created new possibilities in technology and research in a broad range of applications.
In the first part of this thesis, we present two investigations of the relationship between the charge state and optical state of plasmonic metal nanoparticles. Using experimental bias-dependent extinction measurements, we derive a potential- dependent dielectric function for Au nanoparticles that accounts for changes in the physical properties due to an applied bias that contribute to the optical extinction. We also present theory and experiment for the reverse effect– the manipulation of the carrier density of Au nanoparticles via controlled optical excitation. This plasmoelectric effect takes advantage of the strong resonant properties of plasmonic materials and the relationship between charge state and optical properties to eluci- date a new avenue for conversion of optical power to electrical potential.
The second topic of this thesis is the non-radiative decay of plasmons to a hot-carrier distribution, and the distribution’s subsequent relaxation. We present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. We also preform ab initio calculations of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We extend these first-principle methods to calculate the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions. Finally, we combine these first-principles calculations of carrier dynamics and optical response to produce a complete theoretical description of ultrafast pump-probe measurements, free of any fitting parameters that are typical in previous analyses.