20 resultados para ELASTIC-PLASTIC SOLIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of two channels NN and NN*, coupled through unitarity, is studied to see whether sizable peaks can be produced in elastic nucleon-nucleon scattering due to the opening of a strongly coupled inelastic channel. One-pion-exchange (OPE) interactions are calculated to estimate the NN*→NN* and NN→NN* amplitudes. The OPE production amplitudes are used as the sole dynamical input to drive the multichannel ND-1 equations in the determinental approximation, and the effect on the J = 2+ (1D2) elastic NN scattering amplitude is studied as the width of the unstable N* and strength of coupling to the inelastic channel are varied. A cusp-type enhancement appears in the NN channel near the NN* threshold but for the known value of the N* width the cusp is so “wooly” that any resulting elastic peak is likely to be too broad and diminished in height to be experimentally prominent. A brief survey of current experimental knowledge of the real part of the 1D2 NN phase shift near the NN* threshold is given, and the values are found to be much smaller than the nearly “resonant” phase shifts predicted by the coupled channel model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large plane deformations of thin elastic sheets of neo-Hookean material are considered and a method of successive substitutions is developed to solve problems within the two-dimensional theory of finite plane stress. The first approximation is determined by linear boundary value problems on two harmonic functions, and it is approached asymptotically at very large extensions in the plane of the sheet. The second and higher approximations are obtained by solving Poisson equations. The method requires modification when the membrane has a traction-free edge.

Several problems are treated involving infinite sheets under uniform biaxial stretching at infinity. First approximations are obtained when a circular or elliptic inclusion is present and when the sheet has a circular or elliptic hole, including the limiting cases of a line inclusion and a straight crack or slit. Good agreement with exact solutions is found for circularly symmetric deformations. Other examples discuss the stretching of a short wide strip, the deformation near a boundary corner which is traction-free, and the application of a concentrated load to a boundary point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.

Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface mass loads come in many different varieties, including the oceans, atmosphere, rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth's surface on time scales that range from less than a day to many thousand years. The weights of the shifting loads exert normal forces on Earth's surface. Since the Earth is not perfectly rigid, the applied pressure deforms the shape of the solid Earth in a manner controlled by the material properties of Earth's interior. One of the most prominent types of surface mass loading, ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due to the gravitational influence of celestial objects, such as the moon and sun. Depending on geographic location, the surface displacements induced by OTL typically range from millimeters to several centimeters in amplitude, which may be inferred from Global Navigation and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal characteristics of observed OTL-induced surface displacements may therefore be exploited to probe Earth structure. In this thesis, I present descriptions of contemporary observational and modeling techniques used to explore Earth's deformation response to OTL and other varieties of surface mass loading. With the aim to extract information about Earth's density and elastic structure from observations of the response to OTL, I investigate the sensitivity of OTL-induced surface displacements to perturbations in the material structure. As a case study, I compute and compare the observed and predicted OTL-induced surface displacements for a network of GNSS receivers across South America. The residuals in three distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern ocean-tide and elastic-Earth models well predict the observed displacement response in that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency that cannot be explained entirely by random observational uncertainties and that suggests deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth structure due to the presence of the South American craton.