23 resultados para Drosophila Derailed Receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes studies surrounding a ligand-gated ion channel (LGIC): the serotonin type 3A receptor (5-HT3AR). Structure-function experiments using unnatural amino acid mutagenesis are described, as well as experiments on the methodology of unnatural amino acid mutagenesis. Chapter 1 introduces LGICs, experimental methods, and an overview of the unnatural amino acid mutagenesis.

In Chapter 2, the binding orientation of the clinically available drugs ondansetron and granisetron within 5-HT3A is determined through a combination of unnatural amino acid mutagenesis and an inhibition based assay. A cation-π interaction is found for both ondansetron and granisetron with a specific tryptophan residue (Trp183, TrpB) of the mouse 5-HT3AR, which establishes a binding orientation for these drugs.

In Chapter 3, further studies were performed with ondansetron and granisetron with 5-HT3A. The primary determinant of binding for these drugs was determined to not include interactions with a specific tyrosine residue (Tyr234, TyrC2). In completing these studies, evidence supporting a cation-π interaction of a synthetic agonist, meta-chlorophenylbiguanide, was found with TyrC2.

In Chapter 4, a direct chemical acylation strategy was implemented to prepare full-length suppressor tRNA mediated by lanthanum(III) and amino acid phosphate esters. The derived aminoacyl-tRNA is shown to be translationally competent in Xenopus oocytes.

Appendix A.1 gives details of a pharmacological method for determining the equilibrium dissociation constant, KB, of a competitive antagonist with a receptor, known as Schild analysis. Appendix A.2 describes an examination of the inhibitory activity of new chemical analogs of the 5-HT3A antagonist ondansetron. Appendix A.3 reports an organic synthesis of an intermediate for a new unnatural amino acid. Appendix A.4 covers an additional methodological examination for the preparation of amino-acyl tRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Notch signaling pathway enables neighboring cells to coordinate developmental fates in diverse processes such as angiogenesis, neuronal differentiation, and immune system development. Although key components and interactions in the Notch pathway are known, it remains unclear how they work together to determine a cell's signaling state, defined as its quantitative ability to send and receive signals using particular Notch receptors and ligands. Recent work suggests that several aspects of the system can lead to complex signaling behaviors: First, receptors and ligands interact in two distinct ways, inhibiting each other in the same cell (in cis) while productively interacting between cells (in trans) to signal. The ability of a cell to send or receive signals depends strongly on both types of interactions. Second, mammals have multiple types of receptors and ligands, which interact with different strengths, and are frequently co-expressed in natural systems. Third, the three mammalian Fringe proteins can modify receptor-ligand interaction strengths in distinct and ligand-specific ways. Consequently, cells can exhibit non-intuitive signaling states even with relatively few components.

In order to understand what signaling states occur in natural processes, and what types of signaling behaviors they enable, this thesis puts forward a quantitative and predictive model of how the Notch signaling state is determined by the expression levels of receptors, ligands, and Fringe proteins. To specify the parameters of the model, we constructed a set of cell lines that allow control of ligand and Fringe expression level, and readout of the resulting Notch activity. We subjected these cell lines to an assay to quantitatively assess the levels of Notch ligands and receptors on the surface of individual cells. We further analyzed the dependence of these interactions on the level and type of Fringe expression. We developed a mathematical modeling framework that uses these data to predict the signaling states of individual cells from component expression levels. These methods allow us to reconstitute and analyze a diverse set of Notch signaling configurations from the bottom up, and provide a comprehensive view of the signaling repertoire of this major signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPI-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4β2 nAChRs within the endoplasmic reticulum. Lynx affects assembly of nascent α4 and β2 subunits, and alters the stoichiometry of the population that reaches the plasma membrane. Additionally, these data suggest that lynx1 alters nAChR stoichiometry primarily through this intracellular interaction, rather than via effects on plasma membrane nAChRs. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any GPI-anchored protein, could act within the cell to alter assembly of multi-subunit protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.

The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The effect of 2,2’-bis-[α-(trimethylammonium)methyl]azobenzene (2BQ), a photoisomerizable competitive antagonist, was studied at the nicotinic acetycholine receptor of Electrophorus electroplaques using voltage-jump and light-flash techniques.

2. 2BQ, at concentrations below 3 μΜ, reduced the amplitude of voltage-jump relaxations but had little effect on the voltage-jump relaxation time constants under all experimental conditions. At higher concentrations and voltages more negative than -150 mV, 2BQ caused significant open channel blockade.

3. Dose-ratio studies showed that the cis and trans isomers of 2BQ have equilibrium binding constants (K) of .33 and 1.0 μΜ, respectively. The binding constants determined for both isomers are independent of temperature, voltage, agonist concentration, and the nature of the agonist.

4. In a solution of predominantly cis-2BQ, visible-light flashes led to a net cis→trans isomerization and caused an increase in the agonist-induced current. This increase had at least two exponential components; the larger amplitude component had the same time constant as a subsequent voltage-jump relaxation; the smaller amplitude component was investigated using ultraviolet light flashes.

5. In a solution of predominantly trans-2BQ, UV-light flashes led to a net trans→cis isomerization and caused a net decrease in the agonist-induced current. This effect had at least two exponential components. The smaller and faster component was an increase in agonist-induced current and had a similar time constant to the voltage-jump relaxation. The larger component was a slow decrease in the agonist-induced current with rate constant approximately an order of magnitude less than that of the voltage-jump relaxation. This slow component provided a measure of the rate constant for dissociation of cis-2BQ (k_ = 60/s at 20°C). Simple modelling of the slope of the dose-rate curves yields an association rate constant of 1.6 x 108/M/s. This agrees with the association rate constant of 1.8 x 108/M/s estimated from the binding constant (Ki). The Q10 of the dissociation rate constant of cis-2BQ was 3.3 between 6° and 20°C. The rate constants for association and dissociation of cis-28Q at receptors are independent of voltage, agonist concentration, and the nature of the agonist.

6. We have measured the molecular rate constants of a competitive antagonist which has roughly the same K as d-tubocurarine but interacts more slowly with the receptor. This leads to the conclusion that curare itself has an association rate constant of 4 x 109/M/s or roughly as fast as possible for an encounter-limited reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Phenol oxidase is the enzyme responsible for hardening and pigmentation of the insect cuticle. In Drosophila, phenol oxidase is a latent enzyme. Enzyme activity is produced by the interaction of a number of protein components. A minimal activation scheme consisting of six protein components, designated Pre S, S activator, S, P. P' and Ʌ1 is described. Quantitative assays have been developed for the S activator, S, P and P' proteins and these components have been partially purified. Experiments describing the interactions of the six components have been conducted and a model for the activation of phenol oxidase in a minimal system is proposed. Possible mechanisms of the reactions between the constituents of the activating system and potential regulatory mechanisms involved in phenol oxidase production and function are discussed.

Part II

A method has been developed for the partial purification of insulin from human serum. A procedure for the determination of the electrophoretic mobility of serum insulin on polyacrylamide gels is described. An electrophoretic analysis of insulin isolated from a normal subject is reported and in addition to a major band, the existence of a number of minor bands of immunoreactive insulin is described. A comparison of the electrophoretic patterns of insulin isolated from normal and diabetic subjects was carried out and indications that differences between them may occur are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three mutants of Drosophila melanogaster have been isolated in which the free-running period of the circadian eclosion rhythm and the adult locomotor activity rhythm is affected. One mutant is arrhythmic, another has a short period of 19 hours, and the third has a long period of 28 hours. The mutants retain their phenotypes over the temperature range 18° to 25° C. All three mutants map near the tip of the X chromosome (distal to the centromere). By deficiency mapping, the short-period mutation has been localized to the 3B1-2 region. Complementation tests show that all three mutations affect the same functional gene.

Analysis of activity rhythms of individual mosaic flies indicates that the site of action of the short-period mutation is probably located in the head of the fly. A few activity patterns of split-head and mixed-head mosaics appear to possess both mutant and heterozygous components, suggesting that the fly head may contain two complete clocks capable of maintaining their periodicities independently.

The short-period mutation affects both the duration of the light-insensitive part of the oscillation and the degree to which the clock can be reset during the light-sensitive part of the oscillation.

Both the short-period and long-period mutant eclosion rhythms can be entrained to a period of 24 hours by a 12:12 light-dark cycle having a light intensity at least two orders of magnitude greater than that required to entrain the normal rhythm. The arrhythmic mutant does not entrain under these conditions. In the presence of a temperature cycle, however, the arrhythmic mutant does entrain, but its rhythm damps out when the temperature cycle is removed.

Evidence is presented that Pittendrigh's two-oscillator model for the clock in D. pseudoobscura applies to D. melanogaster as well. The three clock mutations primarily affect the light- sensitive driving oscillator. The arrhythmic mutation appears to have eliminated the driving oscillator while leaving the temperature-sensitive driven oscillator relatively intact.