17 resultados para ART regulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is a highly conserved behavioral state whose regulation is still unclear. In this thesis I initially briefly introduce the known sleep circuitry and regulation in vertebrates, and why zebrafish is seen as a good model to study sleep-regulation. I describe the existing two-process model of sleep regulation, which posits that the two processes C (circadian) and S (homeostatic) control timing of sleep-wake behavior. I then study the role melatonin plays in the circadian regulation of sleep using zebrafish. Firstly, we find that the absence of melatonin results in a reduction of sleep at night, establishing that endogenous melatonin is required for sleep at night. Secondly, melatonin mutants show a reduction in sleep in animals with no functional behavioral rhythms suggesting that melatonin does not require intact circadian rhythms for its effect on sleep. Thirdly, melatonin mutants do not exhibit any changes in circadian rhythms, suggesting that the circadian clock does not require melatonin for its function. Fourthly, we find that in the absence of melatonin, there is no rhythmic expression of sleep, suggesting that melatonin is the output molecule of process C. Lastly, we describe a connection between adenosine signaling (output molecules of process S), and melatonin. Following this we proceed to study the role adenosine signaling plays in sleep-wake behavior. We find that firstly, adenosine receptor A1 and A2 are involved in sleep- wake behavior in zebrafish, based on agonist/antagonist behavioral results. Secondly, we find that several brain regions such as PACAP cells in the rostral midbrain, GABAergic cells in the forebrain and hindbrain, Dopamine and serotonin cells in the caudal hypothalamus and sox2 cells lining the hindbrain ventricle are activated in response to the A1 antagonist and VMAT positive cells are activated in response to the A2A agonist, suggesting these areas are involved in adenosine signaling in zebrafish. Thirdly, we find that knocking out the zebrafish adenosine receptors has no effect on sleep architecture. Lastly, we find that while the A1 agonist phenotype requires the zfAdora1a receptor, the antagonist and the A2A agonist behavioral phenotypes are not mediated by the zfAdora1a, zfAdora1b and zfAdoraA2Aa, zfAdora2Ab receptors respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I. The cellular slime mold Dictyostelium discoideum is a simple eukaryote which undergoes a multi-cellular developmental process. Single cell myxamoebae divide vegetatively in the presence of a food source. When the food is depleted or removed, the cells aggregate, forming a migrating pseudoplasmodium which differentiates into a fruiting body containing stalk and spore cells. I have shown that during the developmental cycle glycogen phosphorylase, aminopeptidase, and alanine transaminase are developmentally regulated, that is their specific activities increased at a specific time in the developmental cycle. Phosphorylase activity is undetectable in developing cells until mid-aggregation whereupon it increases and reaches a maximum at mid-culmination. Thereafter the enzyme disappears. Actinomycin D and cycloheximide studies as well as studies with morphologically aberrant and temporally deranged mutants indicate that prior RNA and concomitant protein synthesis are necessary for the rise and decrease in activity and support the view that the appearance of the enzyme is regulated at the transcriptional level. Aminopeptidase and alanine transaminase increase 3 fold starting at starvation and reach maximum activity at 18 and 5 hours respectively.

The cellular DNA s of D. discoideum were characterized by CsC1 buoyant density gradient centrifugation and by renaturation kinetics. Whole cell DNA exhibits three bands in CsCl: ρ = 1.676 g/cc (nuclear main band), 1.687 (nuclear satellite), and 1.682 (mitochondrial). Reassociation kinetics at a criterion of Tm -23°C indicates that the nuclear reiterated sequences make up 30% of the genome (Cot1/2 (pure) 0.28) and the single-copy DNA 70% (Cot1/2(pure) 70). The complexity of the nuclear genome is 30 x 109 daltons and that of the mitochondrial DNA is 35-40 x 106 daltons (Cot1/2 0.15). rRNA cistrons constitute 2.2% of nuclear DNA and have a ρ = 1.682.

RNA extracted from 4 stages during developmental cycle of Dictyostelium was hybridized with purified single-copy nuclear DNA. The hybrids had properties indicative of single-copy DNA-RNA hybrids. These studies indicate that there are, during development, qualitative and quantitative changes in the portion of the single-copy of the genome transcribed. Overall, 56% of the genome is represented by transcripts between the amoeba and mid-culmination stages. Some 19% are sequences which are represented at all stages while 37% of the genome consists of stage specific sequences.

Part II. RNA and protein synthesis and polysome formation were studied during early development of the surf clam Spisula solidissima embryos. The oocyte has a small number of polysomes and a low but measurable rate of protein synthesis (leucine-3H incorporation). After fertilization, there is a continual increase in the percentage of ribosomes sedimenting in the polysome region. Newly synthesized RNA (uridine-5-3H incorporation) was found in polysomes as early as the 2-cell stage. During cleavage, the newly formed RNA is associated mainly with the light polysomes.

RNA extracted from polysomes labeled at the 4-cell stage is polydisperse, nonribosomal, and non-4 S. Actinomycin D causes a reduction of about 30% of the polysomes formed between fertilization and the 16-cell stage.

In the early cleavage stages the light polysomes are mostly affected by actinomycin.