31 resultados para APPROXIMATIONS
Resumo:
The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.
In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.
This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.
The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.
The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.
Resumo:
Over the past few decades, ferromagnetic spinwave resonance in magnetic thin films has been used as a tool for studying the properties of magnetic materials. A full understanding of the boundary conditions at the surface of the magnetic material is extremely important. Such an understanding has been the general objective of this thesis. The approach has been to investigate various hypotheses of the surface condition and to compare the results of these models with experimental data. The conclusion is that the boundary conditions are largely due to thin surface regions with magnetic properties different from the bulk. In the calculations these regions were usually approximated by uniform surface layers; the spins were otherwise unconstrained except by the same mechanisms that exist in the bulk (i.e., no special "pinning" at the surface atomic layer is assumed). The variation of the ferromagnetic spinwave resonance spectra in YIG films with frequency, temperature, annealing, and orientation of applied field provided an excellent experimental basis for the study.
This thesis can be divided into two parts. The first part is ferromagnetic resonance theory; the second part is the comparison of calculated with experimental data in YIG films. Both are essential in understanding the conclusion that surface regions with properties different from the bulk are responsible for the resonance phenomena associated with boundary conditions.
The theoretical calculations have been made by finding the wave vectors characteristic of the magnetic fields inside the magnetic medium, and then combining the fields associated with these wave vectors in superposition to match the specified boundary conditions. In addition to magnetic boundary conditions required for the surface layer model, two phenomenological magnetic boundary conditions are discussed in detail. The wave vectors are easily found by combining the Landau-Lifshitz equations with Maxwell's equations. Mode positions are most easily predicted from the magnetic wave vectors obtained by neglecting damping, conductivity, and the displacement current. For an insulator where the driving field is nearly uniform throughout the sample, these approximations permit a simple yet accurate calculation of the mode intensities. For metal films this calculation may be inaccurate but the mode positions are still accurately described. The techniques necessary for calculating the power absorbed by the film under a specific excitation including the effects of conductivity, displacement current and damping are also presented.
In the second part of the thesis the properties of magnetic garnet materials are summarized and the properties believed associated with the two surface regions of a YIG film are presented. Finally, the experimental data and calculated data for the surface layer model and other proposed models are compared. The conclusion of this study is that the remarkable variety of spinwave spectra that arises from various preparation techniques and subsequent treatments can be explained by surface regions with magnetic properties different from the bulk.
Resumo:
When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.
Resumo:
Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.
Resumo:
An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.
The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.
The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.
In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.
The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.
Resumo:
Part I
Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.
Part II
The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.
Resumo:
A study is made of the accuracy of electronic digital computer calculations of ground displacement and response spectra from strong-motion earthquake accelerograms. This involves an investigation of methods of the preparatory reduction of accelerograms into a form useful for the digital computation and of the accuracy of subsequent digital calculations. Various checks are made for both the ground displacement and response spectra results, and it is concluded that the main errors are those involved in digitizing the original record. Differences resulting from various investigators digitizing the same experimental record may become as large as 100% of the maximum computed ground displacements. The spread of the results of ground displacement calculations is greater than that of the response spectra calculations. Standardized methods of adjustment and calculation are recommended, to minimize such errors.
Studies are made of the spread of response spectral values about their mean. The distribution is investigated experimentally by Monte Carlo techniques using an electric analog system with white noise excitation, and histograms are presented indicating the dependence of the distribution on the damping and period of the structure. Approximate distributions are obtained analytically by confirming and extending existing results with accurate digital computer calculations. A comparison of the experimental and analytical approaches indicates good agreement for low damping values where the approximations are valid. A family of distribution curves to be used in conjunction with existing average spectra is presented. The combination of analog and digital computations used with Monte Carlo techniques is a promising approach to the statistical problems of earthquake engineering.
Methods of analysis of very small earthquake ground motion records obtained simultaneously at different sites are discussed. The advantages of Fourier spectrum analysis for certain types of studies and methods of calculation of Fourier spectra are presented. The digitizing and analysis of several earthquake records is described and checks are made of the dependence of results on digitizing procedure, earthquake duration and integration step length. Possible dangers of a direct ratio comparison of Fourier spectra curves are pointed out and the necessity for some type of smoothing procedure before comparison is established. A standard method of analysis for the study of comparative ground motion at different sites is recommended.
Resumo:
The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.
We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.
The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.
We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.
Resumo:
An investigation was conducted to estimate the error when the flat-flux approximation is used to compute the resonance integral for a single absorber element embedded in a neutron source.
The investigation was initiated by assuming a parabolic flux distribution in computing the flux-averaged escape probability which occurs in the collision density equation. Furthermore, also assumed were both wide resonance and narrow resonance expressions for the resonance integral. The fact that this simple model demonstrated a decrease in the resonance integral motivated the more detailed investigation of the thesis.
An integral equation describing the collision density as a function of energy, position and angle is constructed and is subsequently specialized to the case of energy and spatial dependence. This equation is further simplified by expanding the spatial dependence in a series of Legendre polynomials (since a one-dimensional case is considered). In this form, the effects of slowing-down and flux depression may be accounted for to any degree of accuracy desired. The resulting integral equation for the energy dependence is thus solved numerically, considering the slowing down model and the infinite mass model as separate cases.
From the solution obtained by the above method, the error ascribable to the flat-flux approximation is obtained. In addition to this, the error introduced in the resonance integral in assuming no slowing down in the absorber is deduced. Results by Chernick for bismuth rods, and by Corngold for uranium slabs, are compared to the latter case, and these agree to within the approximations made.
Resumo:
The problem motivating this investigation is that of pure axisymmetric torsion of an elastic shell of revolution. The analysis is carried out within the framework of the three-dimensional linear theory of elastic equilibrium for homogeneous, isotropic solids. The objective is the rigorous estimation of errors involved in the use of approximations based on thin shell theory.
The underlying boundary value problem is one of Neumann type for a second order elliptic operator. A systematic procedure for constructing pointwise estimates for the solution and its first derivatives is given for a general class of second-order elliptic boundary-value problems which includes the torsion problem as a special case.
The method used here rests on the construction of “energy inequalities” and on the subsequent deduction of pointwise estimates from the energy inequalities. This method removes certain drawbacks characteristic of pointwise estimates derived in some investigations of related areas.
Special interest is directed towards thin shells of constant thickness. The method enables us to estimate the error involved in a stress analysis in which the exact solution is replaced by an approximate one, and thus provides us with a means of assessing the quality of approximate solutions for axisymmetric torsion of thin shells.
Finally, the results of the present study are applied to the stress analysis of a circular cylindrical shell, and the quality of stress estimates derived here and those from a previous related publication are discussed.
Resumo:
The sudden axial acceleration of a column of liquid bounded at one end by a concave free surface has been found, experimentally, to produce a jet which issues from the free surface with a speed several times that imparted to the column.
Theoretical approximations to such flows, valid for small time, are formulated subject to the assumption that the fluid is inviscid and incompressible. In a special two-dimensional case, it is found that, for vanishingly small time, the velocity at the point on the free surface from which the jet emanates is π/2 times the velocity imparted to the column. The solutions to several problems in two and three dimensions assuming that the initial curvature of the free surface is small, lead to values for this ratio dependent upon the curvature—the initial velocity in the case of axial symmetry exceeding that of the analogous two-dimensional problem by approximately 25%.
Experiments conducted upon the phenomenon give values systematically in excess of those predicted by the theory, although theory and experiment are in qualitative agreement with respect to the displacement of the free surface. It is suggested that the discrepancy is attributable to effects of finite curvature having been imperfectly accounted for in the axially-symmetric analysis.
Photographic materials on pp. 115, 120, and 121 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.
Resumo:
Two general, numerically exact, quantum mechanical methods have been developed for the calculation of energy transfer in molecular collisions. The methods do not treat electronic transitions because of the exchange symmetry of the electrons. All interactions between the atoms in the system are written as potential energies.
The first method is a matrix generalization of the invariant imbedding procedure, 17, 20 adapted for multi-channel collision processes. The second method is based on a direct integration of the matrix Schrödinger equation, with a re-orthogonalization transform applied during the integration.
Both methods have been applied to a collinear collision model for two diatoms, interacting via a repulsive exponential potential. Two major studies were performed. The first was to determine the energy dependence of the transition probabilities for an H2 on the H2 model system. Transitions are possible between translational energy and vibrational energy, and from vibrational modes of one H2 to the other H2. The second study was to determine the variation of vibrational energy transfer probability with differences in natural frequency of two diatoms similar to N2.
Comparisons were made to previous approximate analytical solutions of this same problem. For translational to vibrational energy transfer, the previous approximations were not adequate. For vibrational to vibrational energy transfer of one vibrational quantum, the approximations were quite good.
Resumo:
Large plane deformations of thin elastic sheets of neo-Hookean material are considered and a method of successive substitutions is developed to solve problems within the two-dimensional theory of finite plane stress. The first approximation is determined by linear boundary value problems on two harmonic functions, and it is approached asymptotically at very large extensions in the plane of the sheet. The second and higher approximations are obtained by solving Poisson equations. The method requires modification when the membrane has a traction-free edge.
Several problems are treated involving infinite sheets under uniform biaxial stretching at infinity. First approximations are obtained when a circular or elliptic inclusion is present and when the sheet has a circular or elliptic hole, including the limiting cases of a line inclusion and a straight crack or slit. Good agreement with exact solutions is found for circularly symmetric deformations. Other examples discuss the stretching of a short wide strip, the deformation near a boundary corner which is traction-free, and the application of a concentrated load to a boundary point.
Resumo:
The effect of intermolecular coupling in molecular energy levels (electronic and vibrational) has been investigated in neat and isotopic mixed crystals of benzene. In the isotopic mixed crystals of C6H6, C6H5D, m-C6H4D2, p-C6H4D2, sym-C6H3D3, C6D5H, and C6D6 in either a C6H6 or C6D6 host, the following phenomena have been observed and interpreted in terms of a refined Frenkel exciton theory: a) Site shifts; b) site group splittings of the degenerate ground state vibrations of C6H6, C6D6, and sym-C6H3D3; c) the orientational effect for the isotopes without a trigonal axis in both the 1B2u electronic state and the ground state vibrations; d) intrasite Fermi resonance between molecular fundamentals due to the reduced symmetry of the crystal site; and e) intermolecular or intersite Fermi resonance between nearly degenerate states of the host and guest molecules. In the neat crystal experiments on the ground state vibrations it was possible to observe many of these phenomena in conjunction with and in addition to the exciton structure.
To theoretically interpret these diverse experimental data, the concepts of interchange symmetry, the ideal mixed crystal, and site wave functions have been developed and are presented in detail. In the interpretation of the exciton data the relative signs of the intermolecular coupling constants have been emphasized, and in the limit of the ideal mixed crystal a technique is discussed for locating the exciton band center or unobserved exciton components. A differentiation between static and dynamic interactions is made in the Frenkel limit which enables the concepts of site effects and exciton coupling to be sharpened. It is thus possible to treat the crystal induced effects in such a fashion as to make their similarities and differences quite apparent.
A calculation of the ground state vibrational phenomena (site shifts and splittings, orientational effects, and exciton structure) and of the crystal lattice modes has been carried out for these systems. This calculation serves as a test of the approximations of first order Frenkel theory and the atom-atom, pair wise interaction model for the intermolecular potentials. The general form of the potential employed was V(r) = Be-Cr - A/r6 ; the force constants were obtained from the potential by assuming the atoms were undergoing simple harmonic motion.
In part II the location and identification of the benzene first and second triplet states (3B1u and 3E1u) is given.
Resumo:
This thesis examines two problems concerned with surface effects in simple molecular systems. The first is the problem associated with the interaction of a fluid with a solid boundary, and the second originates from the interaction of a liquid with its own vapor.
For a fluid in contact with a solid wall, two sets of integro-differential equations, involving the molecular distribution functions of the system, are derived. One of these is a particular form of the well-known Bogolyubov-Born-Green-Kirkwood-Yvon equations. For the second set, the derivation, in contrast with the formulation of the B.B.G.K.Y. hierarchy, is independent of the pair-potential assumption. The density of the fluid, expressed as a power series in the uniform fluid density, is obtained by solving these equations under the requirement that the wall be ideal.
The liquid-vapor interface is analyzed with the aid of equations that describe the density and pair-correlation function. These equations are simplified and then solved by employing the superposition and the low vapor density approximations. The solutions are substituted into formulas for the surface energy and surface tension, and numerical results are obtained for selected systems. Finally, the liquid-vapor system near the critical point is examined by means of the lowest order B.B.G.K.Y. equation.