24 resultados para 029901 Biological Physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work quantifies the nature of delays in genetic regulatory networks and their effect on system dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic (probability density function) and deterministic setting (impulse function), whilst being shown to be equivalent under different assumptions. The dependence of the distribution properties on rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution of the delay in the context of protein production processes is shown to be highly dependent on the size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have delay distributions with a smaller relative variance, and hence, less uncertainty in the completion times, however, they lead to larger delays. On the other hand large uncertainties may actually play a positive role, as broader distributions can lead to larger stability regions when this formalization of the protein production delays is incorporated into a feedback system.

Furthermore, evidence suggests that delays may play a role as an explicit design into existing controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabilizing effects through a control theoretic approach. Lastly, a distributed delay based controller design method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback system re-emerges as an effective controller design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Barton laboratory has established that octahedral rhodium complexes bearing the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically destabilized sites, such as base pair mismatches, in DNA with high affinity and selectivity. These complexes approach DNA from the minor groove, ejecting the mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In recent years, we have shown that these metalloinsertor complexes also exhibit cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) machinery.

Here, we establish that a sensitive structure-activity relationship exists for rhodium metalloinsertors. We studied the relationship between the chemical structures of metalloinsertors and their effect on biological activity for ten complexes with similar DNA binding affinities, but wide variation in their lipophilicity. Drastic differences were observed in the selectivities of the complexes for MMR-deficient cells. Compounds with hydrophilic ligands were highly selective, exhibiting preferential cytotoxicity in MMR-deficient cells at low concentrations and short incubation periods, whereas complexes with lipophilic ligands displayed poor cell-selectivity. It was discovered that all of the complexes localized to the nucleus in concentrations sufficient for mismatch binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake. Significantly, these results support the notion that mitochondrial DNA is not the desired target for our metalloinsertor complexes; instead, selectivity stems from targeting mismatches in genomic DNA.

We have also explored the potential for metalloinsertors to be developed into more complex structures with multiple functionalities that could either enhance their overall potency or impart mismatch selectivity onto other therapeutic cargo. We have constructed a family of bifunctional metalloinsertor conjugates incorporating cis-platinum, each unique in its chemical structure, DNA binding interactions, and biological activity. The study of these complexes in MMR-deficient cells has established that the cell-selective biological activity of rhodium metalloinsertors proceeds through a critical cellular pathway leading to necrosis.

We further explored the underlying mechanisms surrounding the biological response to mismatch recognition by metalloinsertors in the genome. Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly accumulates in response to metalloinsertor treatment, signifying the induction of double strand breaks in the genome. Significantly, we have discovered that our metalloinsertor complexes selectively inhibit transcription in MMR-deficient cells, which may be a crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, preliminary in vivo studies have revealed the capability of these compounds to traverse the complex environments of multicellular organisms and accumulate in MMR-deficient tumors. Our ever-increasing understanding of metalloinsertors, as well as the development of new generations of complexes both monofunctional and bifunctional, enables their continued progress into the clinic as promising new chemotherapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computation technology has dramatically changed the world around us; you can hardly find an area where cell phones have not saturated the market, yet there is a significant lack of breakthroughs in the development to integrate the computer with biological environments. This is largely the result of the incompatibility of the materials used in both environments; biological environments and experiments tend to need aqueous environments. To help aid in these development chemists, engineers, physicists and biologists have begun to develop microfluidics to help bridge this divide. Unfortunately, the microfluidic devices required large external support equipment to run the device. This thesis presents a series of several microfluidic methods that can help integrate engineering and biology by exploiting nanotechnology to help push the field of microfluidics back to its intended purpose, small integrated biological and electrical devices. I demonstrate this goal by developing different methods and devices to (1) separate membrane bound proteins with the use of microfluidics, (2) use optical technology to make fiber optic cables into protein sensors, (3) generate new fluidic devices using semiconductor material to manipulate single cells, and (4) develop a new genetic microfluidic based diagnostic assay that works with current PCR methodology to provide faster and cheaper results. All of these methods and systems can be used as components to build a self-contained biomedical device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.

II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecular circuit engineering is critical for implementing complex functions in vivo, and is a baseline method in the synthetic biology space. However, current methods for conducting biomolecular circuit engineering are time-consuming and tedious. A complete design-build-test cycle typically takes weeks' to months' time due to the lack of an intermediary between design ex vivo and testing in vivo. In this work, we explore the development and application of a "biomolecular breadboard" composed of an in-vitro transcription-translation (TX-TL) lysate to rapidly speed up the engineering design-build-test cycle. We first developed protocols for creating and using lysates for conducting biological circuit design. By doing so we simplified the existing technology to an affordable ($0.03/uL) and easy to use three-tube reagent system. We then developed tools to accelerate circuit design by allowing for linear DNA use in lieu of plasmid DNA, and by utilizing principles of modular assembly. This allowed the design-build-test cycle to be reduced to under a business day. We then characterized protein degradation dynamics in the breadboard to aid to implementing complex circuits. Finally, we demonstrated that the breadboard could be applied to engineer complex synthetic circuits in vitro and in vivo. Specifically, we utilized our understanding of linear DNA prototyping, modular assembly, and protein degradation dynamics to characterize the repressilator oscillator and to prototype novel three- and five-node negative feedback oscillators both in vitro and in vivo. We therefore believe the biomolecular breadboard has wide application for acting as an intermediary for biological circuit engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of the Higgs boson at the LHC, its use as a probe to search for beyond the standard model physics, such as supersymmetry, has become important, as seen in a recent search by the CMS experiment using razor variables in the diphoton final state. Motivated by this search, this thesis examines the LHC discovery potential of a SUSY scenario involving bottom squark pair production with a Higgs boson in the final state. We design and implement a software-based trigger using the razor variables for the CMS experiment to record events with a bottom quark-antiquark pair from a Higgs boson. We characterize the full range of signatures at the LHC from this Higgs-aware SUSY scenario and demonstrate the sensitivity of the CMS data to this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I. Complexes of Biological Bases and Oligonucleotides with RNA

The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.

Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.

The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.

The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.

Part II. Template Recognition and the Degeneracy of the Genetic Code

The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.

Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.