59 resultados para perturbation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.

Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.

One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.

Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.

The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents recent research into analytic topics in the classical theory of General Relativity. It is a thesis in two parts. The first part features investigations into the spectrum of perturbed, rotating black holes. These include the study of near horizon perturbations, leading to a new generic frequency mode for black hole ringdown; an treatment of high frequency waves using WKB methods for Kerr black holes; and the discovery of a bifurcation of the quasinormal mode spectrum of rapidly rotating black holes. These results represent new discoveries in the field of black hole perturbation theory, and rely on additional approximations to the linearized field equations around the background black hole. The second part of this thesis presents a recently developed method for the visualization of curved spacetimes, using field lines called the tendex and vortex lines of the spacetime. The works presented here both introduce these visualization techniques, and explore them in simple situations. These include the visualization of asymptotic gravitational radiation; weak gravity situations with and without radiation; stationary black hole spacetimes; and some preliminary study into numerically simulated black hole mergers. The second part of thesis culminates in the investigation of perturbed black holes using these field line methods, which have uncovered new insights into the dynamics of curved spacetime around black holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydromechanical theory is developed for cycloidal propellers for two limiting modes of operation wherein U » ΩR and U « ΩR, with U the rectilinear propeller speed (speed of advance) and ΩR the rotational blade speed. A first order theory is developed from the basic principles of the kinematics and dynamics of fluid motion and proceeds from the point of view of unsteady hydrofoil theory.

Explicit expressions for the instantaneous forces and moments produced by blade motions are presented. On the basis of these results an optimization procedure is carried out which minimizes the energy loss under the constraint of specified mean thrust. Under optimal conditions the propeller is found to possess high Froude efficiencies in both the high and low speed modes of propulsion. This efficiency is defined as the ratio of the average useful work obtained during one cycle of propeller operation to the average power input required to sustain the motion of the propeller during the cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.

Part II

The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, direct and accurate method to predict the pressure distribution on supercavitating hydrofoils with rounded noses is presented. The thickness of body and cavity is assumed to be small. The method adopted in the present work is that of singular perturbation theory. Far from the leading edge linearized free streamline theory is applied. Near the leading edge, however, where singularities of the linearized theory occur, a non-linear local solution is employed. The two unknown parameters which characterize this local solution are determined by a matching procedure. A uniformly valid solution is then constructed with the aid of the singular perturbation approach.

The present work is divided into two parts. In Part I isolated supercavitating hydrofoils of arbitrary profile shape with parabolic noses are investigated by the present method and its results are compared with the new computational results made with Wu and Wang's exact "functional iterative" method. The agreement is very good. In Part II this method is applied to a linear cascade of such hydrofoils with elliptic noses. A number of cases are worked out over a range of cascade parameters from which a good idea of the behavior of this type of important flow configuration is obtained.

Some of the computational aspects of Wu and Wang's functional iterative method heretofore not successfully applied to this type of problem are described in an appendix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.

We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.

We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:

i) the mean exit time

ii) the phase-space distribution of exit locations.

When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.

Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.

The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.

The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of capillary-gravity waves of permanent form on deep water are studied. Two different formulations to the problem are given. The theory of simple bifurcation is reviewed. For small amplitude waves a formal perturbation series is used. The Wilton ripple phenomenon is reexamined and shown to be associated with a bifurcation in which a wave of permanent form can double its period. It is shown further that Wilton's ripples are a special case of a more general phenomenon in which bifurcation into subharmonics and factorial higher harmonics can occur. Numerical procedures for the calculation of waves of finite amplitude are developed. Bifurcation and limit lines are calculated. Pure and combination waves are continued to maximum amplitude. It is found that the height is limited in all cases by the surface enclosing one or more bubbles. Results for the shape of gravity waves are obtained by solving an integra-differential equation. It is found that the family of solutions giving the waveheight or equivalent parameter has bifurcation points. Two bifurcation points and the branches emanating from them are found specifically, corresponding to a doubling and tripling of the wavelength. Solutions on the new branches are calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical approximations of nonunique solutions of the Navier-Stokes equations are obtained for steady viscous incompressible axisymmetric flow between two infinite rotating coaxial disks. For example, nineteen solutions have been found for the case when the disks are rotating with the same speed but in opposite direction. Bifurcation and perturbed bifurcation phenomena are observed. An efficient method is used to compute solution branches. The stability of solutions is analyzed. The rate of convergence of Newton's method at singular points is discussed. In particular, recovery of quadratic convergence at "normal limit points" and bifurcation points is indicated. Analytical construction of some of the computed solutions using singular perturbation techniques is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.

The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.

Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.

Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.

In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.

In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The branching theory of solutions of certain nonlinear elliptic partial differential equations is developed, when the nonlinear term is perturbed from unforced to forced. We find families of branching points and the associated nonisolated solutions which emanate from a bifurcation point of the unforced problem. Nontrivial solution branches are constructed which contain the nonisolated solutions, and the branching is exhibited. An iteration procedure is used to establish the existence of these solutions, and a formal perturbation theory is shown to give asymptotically valid results. The stability of the solutions is examined and certain solution branches are shown to consist of minimal positive solutions. Other solution branches which do not contain branching points are also found in a neighborhood of the bifurcation point.

The qualitative features of branching points and their associated nonisolated solutions are used to obtain useful information about buckling of columns and arches. Global stability characteristics for the buckled equilibrium states of imperfect columns and arches are discussed. Asymptotic expansions for the imperfection sensitive buckling load of a column on a nonlinearly elastic foundation are found and rigorously justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.

To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.