19 resultados para magenesium alloys formability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inelastic neutron scattering (INS) and nuclear-resonant inelastic x-ray scattering (NRIXS) were used to measure phonon spectra of FeV as a B2- ordered compound and as a bcc solid solution. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2-ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy, which stabilizes the ordered phase to higher temperatures. Ab initio calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.

The phonon spectra of Au-rich alloys of fcc Au-Fe were also measured. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon density of states (DOS) with Fe concentration that increases the miscibility gap temperature. The magnitude of the effect is non- linear and it is reduced at higher Fe concentrations. Force constants were calculated for several compositions and show a local stiffening of Au–Au bonds close to Fe atoms, but Au–Au bonds that are farther away do not show this effect. Phonon DOS curves calculated from the force constants reproduced the experimental trends. The Au–Fe bond is soft and favors ordering, but a charge transfer from the Fe to the Au atoms stiffens the Au–Au bonds enough to favor unmixing. The stiffening is attributed to two main effects comparable in magnitude: an increase in electron density in the free-electron-like states, and stronger sd-hybridization.

INS and NRIXS measurements were performed at elevated temperatures on B2-ordered FeTi and NRIXS measurements were performed at high pressures. The high-pressure behavior is quasi- harmonic. The softening of the phonon DOS curves with temperature is strongly nonharmonic. Calculations of the force constants and Born-von Karman fits to the experimental data show that the bonds between second nearest neighbors (2nn) are much stiffer than those between 1nn, but fits to the high temperature data show that the former softens at a faster rate with temperature. The Fe–Fe bond softens more than the Ti–Ti bond. The unusual stiffness of the 2nn bond is explained by the calculated charge distribution, which is highly aspherical and localized preferentially in the t2g orbitals. Ab initio molecular dynamics (AIMD) simulations show a charge transfer from the t2g orbitals to the eg orbitals at elevated temperatures. The asphericity decreases linearly with temperature and is more severe at the Fe sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic glass has since its debut been of great research interest due to its profound scientific significance. Magnetic metallic glasses are of special interest because of their promising technological applications. In this thesis, we introduced a novel series of Fe-based alloys and offer a holistic review of the physics and properties of these alloys. A systematic alloy development and optimization method was introduced, with experimental implementation on transition metal based alloying system. A deep understanding on the influencing factors of glass forming ability was brought up and discussed, based on classical nucleation theory. Experimental data of the new Fe-based amorphous alloys were interpreted to further analyze those influencing factors, including reduced glass transition temperature, fragility, and liquid-crystal interface free energy. Various treatments (fluxing, overheating, etc.) were discussed for their impacts on the alloying systems' thermodynamics and glass forming ability. Multiple experimental characterization methods were discussed to measure the alloys' soft magnetic properties. In addition to theoretical and experimental investigation, we also gave a detailed numerical analysis on the rapid-discharge-heating-and-forming platform. It is a novel experimental system which offers extremely fast heating rate for calorimetric characterization and alloy deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary alloys of nickel-palladium-phosphorus and iron-palladium- phosphorus containing 20 atomic % phosphorus were rapidly quenched from the liquid state. The structure of the quenched alloys was investigated by X-ray diffraction. Broad maxima in the diffraction patterns, indicative of a glass-like structure, were obtained for 13 to 73 atomic % nickel and 13 to 44 atomic % iron, with palladium adding up to 80%.

Radial distribution functions were computed from the diffraction data and yielded average interatomic distances and coordination numbers. The structure of the amorphous alloys could be explained in terms of structural units analogous to those existing in the crystalline Pd3P, Ni3P and Fe3P phases, with iron or nickel substituting for palladium. A linear relationship between interatomic distances and composition, similar to Vegard's law, was shown for these metallic glasses.

Electrical resistivity measurements showed that the quenched alloys were metallic. Measurements were performed from liquid helium temperatures (4.2°K) up to the vicinity of the melting points (900°K- 1000°K). The temperature coefficient in the glassy state was very low, of the order of 10-4/°K. A resistivity minimum was found at low temperature, varying between 9°K and 14°K for Nix-Pd80-x -P20 and between 17°K and 96°K for Fex-Pd80-x -P20, indicating the presence of a Kondo effect. Resistivity measurements, with a constant heating rate of about 1.5°C/min,showed progressive crystallization above approximately 600°K.

The magnetic moments of the amorphous Fe-Pd-P alloys were measured as a function of magnetic field and temperature. True ferromagnetism was found for the alloys Fe32-Pd48-P20 and Fe44-Pd36-P20 with Curie points at 165° K and 380° K respectively. Extrapolated values of the saturation magnetic moments to 0° K were 1.70 µB and 2.10 µB respectively. The amorphous alloy Fe23-Pd57-P20 was assumed to be superparamagnetic. The experimental data indicate that phosphorus contributes to the decrease of moments by electron transfer, whereas palladium atoms probably have a small magnetic moment. A preliminary investigation of the Ni-Pd-P amorphous alloys showed that these alloys are weakly paramagnetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a series of experimental studies of lead chalcogenide thermoelectric semiconductors, mainly PbSe. Focusing on a well-studied semiconductor and reporting good but not extraordinary zT, this thesis distinguishes itself by answering the following questions that haven’t been answered: What represents the thermoelectric performance of PbSe? Where does the high zT come from? How (and how much) can we make it better? For the first question, samples were made with highest quality. Each transport property was carefully measured, cross-verified and compared with both historical and contemporary report to overturn commonly believed underestimation of zT. For n- and p-type PbSe zT at 850 K can be 1.1 and 1.0, respectively. For the second question, a systematic approach of quality factor B was used. In n-type PbSe zT is benefited from its high-quality conduction band that combines good degeneracy, low band mass and low deformation potential, whereas zT of p-type is boosted when two mediocre valence bands converge (in band edge energy). In both cases the thermal conductivity from PbSe lattice is inherently low. For the third question, the use of solid solution lead chalcogenide alloys was first evaluated. Simple criteria were proposed to help quickly evaluate the potential of improving zT by introducing atomic disorder. For both PbTe1-xSex and PbSe1-xSx, the impacts in electron and phonon transport compensate each other. Thus, zT in each case was roughly the average of two binary compounds. In p-type Pb1-xSrxSe alloys an improvement of zT from 1.1 to 1.5 at 900 K was achieved, due to the band engineering effect that moves the two valence bands closer in energy. To date, making n-type PbSe better hasn’t been accomplished, but possible strategy is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.

The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical and magnetic properties of amorphous alloys obtained by rapid quenching from the liquid state have been studied. The composition of these alloys corresponds to the general formula MxPd80-xSi20, in which M stands for a metal of the first transition series between chromium and nickel and x is its atomic concentration. The concentration ranges within which an amorphous structure could be obtained were: from 0 to 7 for Cr, Mn and Fe, from 0 to 11 for Co and from 0 to 15 for Ni. A well-defined minimum in the resistivity vs temperature curve was observed for all alloys except those containing nickel. The alloys for which a resistivity minimum was observed had a negative magnetoresistivity approximately proportional to the square of the magnetization and their susceptibility obeyed the Curie-Weiss law in a wide temperature range. For concentrated Fe and Co alloys the resistivity minimum was found to coexist with ferromagnetism. These observations lead to the conclusion that the present results are due to a s-d exchange interaction. The unusually high resistivity minimum temperature observed in the Cr alloys is interpreted as a result of a high Kondo temperature and a large s-d exchange integral. A low Fermi energy of the amorphous alloys (3.5 eV) is also responsible for the anomalies due to the s-d exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superconducting and magnetic properties of splat cooled amorphous alloys of composition (La100-xGdx)80Au20 (0 ≤ x ≤ 100) have been studied. The La80Au20 alloys are ideal type II super-conductors (critical temperature Tc = 3.5° K ). The concentration range (x less than 1) where superconductivity and spin-glass freezing n1ight coexist has been studied in detail. The spin-glass alloys (0 less than x less than 70) exhibit susceptibility maxima and thermomagnetic history effects. In the absence of complications due to crystal field and enhanced matrix effects, a phenomenological model is proposed in which the magnetic clusters are treated as single spin entities interacting via random forces using the molecular field approach. The fundamental parameters (such as the strength of the forces and the size of clusters) can be deduced from magnetization measurements. The remanent magnetization is shown to arise from an interplay of the RKKY and dipolar forces. Magnetoresistivity results are found to be consistent with the aforementioned picture. The nature of magnetic interactions in an amorphous matrix is also discussed. The moment per Gd atom (7µB) is found to be constant and close to that of the crystalline value throughout the concentration range investigated. Finally, a detail study is made of the critical phenomena and magnetic properties of the amorphous ferromagnet: Gd80Au20. The results are compared with recent theories on amorphous magnetism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amorphous phases of the Pd-Cu-P system has been obtained using the technique of rapidly quenching from the liquid state. Broad maxima in the diffraction pattern were obtained in the X-ray diffraction studies which are indicative of a glass-like structure. The composition range over which the amorphous solid phase is retained for the Pd-Cu-P system is (Pd100-xCux)80P20 with 10 ≤ x ≤ 50 and (Pd65Cu35)100-yPy with 15 ≤ y ≤ 24 and (Pd60Cu40)100-yPy with 15 ≤ y ≤ 24.

The electrical resistivity for the Pd-Cu-P alloys decreases with temperature as T2 at low temperatures and as T at high temperatures up to the crystallization temperature. The structural scattering model of the resistivity proposed by Sinha and the spin-fluctuation resistivity model proposed by Hasegawa are re-examined in the light of the similarity of this result to the Pt-Ni-P and Pd-Ni-P systems. Objections are raised to these interpretations of the resistivity results and an alternate model is proposed consistent with the new results on Pd-Cu-P and the observation of similar effects in crystalline transition metal alloys. The observed negative temperature coefficients of resistivity in these amorphous alloys are thus interpreted as being due to the modification of the density of states with temperature through the electron-phonon interaction. The weak Pauli paramagnetism of the Pd-Cu-P, Pt-Ni-P and Pd-Ni-P alloys is interpreted as being modifications of the transition d-states as a result of the formation of strong transition metal-metalloid bonds rather than a large transfer of electrons from the glass former atoms (P in this case) to the d-band of the transition metal in a rigid band picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superconducting properties and the microstructure of the Ag100-xPbx alloys, 1 ≤ x ≤ 5, prepared by rapid quenching from the liquid state with and without subsequent heat treatments, have been studied. The x-ray diffraction measurements show that supersaturated solid solutions of Pb in Ag can be obtained up to 3.2 at.% Pb as compared to less than 0.1 at.% Pb at equilibrium. It was found that by suitable heat treatment it is possible to vary the size and distribution of the Pb precipitates in the Ag matrix and reproducible superconducting properties in the alloy can be observed. The superconducting transition temperature of these samples can be qualitatively explained by the Silvert and Singh's theoretical calculation. The theory developed for the case of layer structure can be extended to three dimensions to explain the critical current versus temperature behavior. The critical current versus field behavior of these alloys can be explained by the modification of the Josephson effect. Combining these results together with the critical magnetic field measurements and the microstructure studies of the alloys, it can be concluded that the three-dimensional proximity effect is the main mechanism for the superconductivity in the Ag-Pb alloys. Based on the Hilsch empirical formula which was based on experimental results obtained on layer structures, the experimental data in this investigation show that the electron-phonon-electron interaction in silver is attractive. The interaction parameter NV obtained is approximately 0.06, which would lead to a value of 10-5 °K for the superconducting transition temperature of Ag. These values are in agreement with other determinations which were done on vapor-deposited metallic film sandwiches. Hence, the Hilsch empirical relation valid for layer structures is also valid in the three-dimensional case. Because the transition temperature and the critical current can be varied in a wide range by controlling the heat treatments, the Ag-Pb superconductors might have some useful applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical transport properties and lattice spacings of simple cubic Te-Au, Te-Au-Fe, and Te-Au-Mn alloys, prepared by rapid quenching from the liquid state, hove been measured and correlated with a proposed bond structure. The variations of superconducting transition temperature, absolute thermoelectric power, and lattice spacing with Te concentration all showed related anomalies in the binary Te-Au alloys. The unusual behavior of these properties has been interpreted by using nearly free electron theory to predict the effect of the second Brillouin zone boundary on the area of the Fermi surface, and the electronic density of states. The behavior of the superconducting transition temperature and the lattice parameter as Fe and Mn ore added further supports the proposed interpretation as well as providing information on the existence of localized magnetic states in the ternary alloys. In addition, it was found that a very distinct bond structure effect on the transition temperatures of the Te-Au-Fe alloys could be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using techniques of rapid quenching from the melt, metastable phases have been obtained in ternary alloys which contain tellurium as a major component and two of the three noble metals (Cu, Ag, Au) as minor components. The metastable phases found in this investigation are either simple cubic or amorphous. The formation of the simple cubic phase is discussed. The electrical resistance and the thermoelectric power of the simple cubic alloy (Au30Te70) have been measured and interpreted in terms of atomic bondings. The semiconducting properties of a metastable amorphous alloy (Au5Cu25Te70) have been measured. The experimental results are discussed in connection with a theoretical consideration of the validity of band theory in an amorphous solid. The existence of extrinsic conduction in an amorphous semiconductor is suggested by the result of electrical resistance and thermoelectric power measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic moments of amorphous ternary alloys containing Pd, Co and Si in atomic concentrations corresponding to Pd_(80-x)Co_xSi_(20) in which x is 3, 5, 7, 9, 10 and 11, have been measured between 1.8 and 300°K and in magnetic fields up to 8.35 kOe. The alloys were obtained by rapid quenching of a liquid droplet and their structures were analyzed by X-ray diffraction. The measurements were made in a null-coil pendulum magnetometer in which the temperature could be varied continuously without immersing the sample in a cryogenic liquid. The alloys containing 9 at.% Co or less obeyed Curie's Law over certain temperature ranges, and had negligible permanent moments at room temperature. Those containing 10 and 11 at.% Co followed Curie's Law only above approximately 200°K and had significant permanent moments at room temperature. For all alloys, the moments calculated from Curie's Law were too high to be accounted for by the moments of individual Co atoms. To explain these findings, a model based on the existence of superparamagnetic clustering is proposed. The cluster sizes calculated from the model are consistent with the rapid onset of ferromagnetism in the alloys containing 10 and 11 at.% Co and with the magnetic moments in an alloy containing 7 at.% Co heat treated in such a manner as to contain a small amount of a crystalline phase. In alloys containing 7 at.% Co or less, a maximum in the magnetization vs temperature curve was observed around 10°K. This maximum was eliminated by cooling the alloy in a magnetic field, and an explanation for this observation is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.

The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.

The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.

The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of s-d exchange scattering of conduction electrons off localized magnetic moments in dilute magnetic alloys is considered employing formal methods of quantum field theoretical scattering. It is shown that such a treatment not only allows for the first time, the inclusion of multiparticle intermediate states in single particle scattering equations but also results in extremely simple and straight forward mathematical analysis. These equations are proved to be exact in the thermodynamic limit. A self-consistent integral equation for electron self energy is derived and approximately solved. The ground state and physical parameters of dilute magnetic alloys are discussed in terms of the theoretical results. Within the approximation of single particle intermediate states our results reduce to earlier versions. The following additional features are found as a consequence of the inclusion of multiparticle intermediate states;

(i) A non analytic binding energy is pre sent for both, antiferromagnetic (J < o) and ferromagnetic (J > o) couplings of the electron plus impurity system.

(ii) The correct behavior of the energy difference of the conduction electron plus impurity system and the free electron system is found which is free of unphysical singularities present in earlier versions of the theories.

(iii) The ground state of the conduction electron plus impurity system is shown to be a many-body condensate state for J < o and J > o, both. However, a distinction is made between the usual terminology of "Singlet" and "Triplet" ground states and nature of our ground state.

(iv) It is shown that a long range ordering, leading to an ordering of the magnetic moments can result from a contact interaction such as the s-d exchange interaction.

(v) The explicit dependence of the excess specific heat of the Kondo systems is obtained and found to be linear in temperatures as T→ o and T ℓnT for 0.3 T_K ≤ T ≤ 0.6 T_K. A rise in (ΔC/T) for temperatures in the region 0 < T ≤ 0.1 T_K is predicted. These results are found to be in excellent agreement with experiments.

(vi) The existence of a critical temperature for Ferromagnetic coupling (J > o) is shown. On the basis of this the apparent contradiction of the simultaneous existence of giant moments and Kondo effect is resolved.