26 resultados para heat equations
Resumo:
The box scheme proposed by H. B. Keller is a numerical method for solving parabolic partial differential equations. We give a convergence proof of this scheme for the heat equation, for a linear parabolic system, and for a class of nonlinear parabolic equations. Von Neumann stability is shown to hold for the box scheme combined with the method of fractional steps to solve the two-dimensional heat equation. Computations were performed on Burgers' equation with three different initial conditions, and Richardson extrapolation is shown to be effective.
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
A method for determining by inspection the stability or instability of any solution u(t,x) = ɸ(x-ct) of any smooth equation of the form u_t = f(u_(xx),u_x,u where ∂/∂a f(a,b,c) > 0 for all arguments a,b,c, is developed. The connection between the mean wavespeed of solutions u(t,x) and their initial conditions u(0,x) is also explored. The mean wavespeed results and some of the stability results are then extended to include equations which contain integrals and also to include some special systems of equations. The results are applied to several physical examples.
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
The question of finding variational principles for coupled systems of first order partial differential equations is considered. Using a potential representation for solutions of the first order system a higher order system is obtained. Existence of a variational principle follows if the original system can be transformed to a self-adjoint higher order system. Existence of variational principles for all linear wave equations with constant coefficients having real dispersion relations is established. The method of adjoining some of the equations of the original system to a suitable Lagrangian function by the method of Lagrange multipliers is used to construct new variational principles for a class of linear systems. The equations used as side conditions must satisfy highly-restrictive integrability conditions. In the more difficult nonlinear case the system of two equations in two independent variables can be analyzed completely. For systems determined by two conservation laws the side condition must be a conservation law in addition to satisfying the integrability conditions.
Resumo:
A theory of two-point boundary value problems analogous to the theory of initial value problems for stochastic ordinary differential equations whose solutions form Markov processes is developed. The theory of initial value problems consists of three main parts: the proof that the solution process is markovian and diffusive; the construction of the Kolmogorov or Fokker-Planck equation of the process; and the proof that the transistion probability density of the process is a unique solution of the Fokker-Planck equation.
It is assumed here that the stochastic differential equation under consideration has, as an initial value problem, a diffusive markovian solution process. When a given boundary value problem for this stochastic equation almost surely has unique solutions, we show that the solution process of the boundary value problem is also a diffusive Markov process. Since a boundary value problem, unlike an initial value problem, has no preferred direction for the parameter set, we find that there are two Fokker-Planck equations, one for each direction. It is shown that the density of the solution process of the boundary value problem is the unique simultaneous solution of this pair of Fokker-Planck equations.
This theory is then applied to the problem of a vibrating string with stochastic density.
Resumo:
Consider a sphere immersed in a rarefied monatomic gas with zero mean flow. The distribution function of the molecules at infinity is chosen to be a Maxwellian. The boundary condition at the body is diffuse reflection with perfect accommodation to the surface temperature. The microscopic flow of particles about the sphere is modeled kinetically by the Boltzmann equation with the Krook collision term. Appropriate normalizations in the near and far fields lead to a perturbation solution of the problem, expanded in terms of the ratio of body diameter to mean free path (inverse Knudsen number). The distribution function is found directly in each region, and intermediate matching is demonstrated. The heat transfer from the sphere is then calculated as an integral over this distribution function in the inner region. Final results indicate that the heat transfer may at first increase over its free flow value before falling to the continuum level.
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
This thesis presents an experimental investigation of the axisymmetric heat transfer from a small scale fire and resulting buoyant plume to a horizontal, unobstructed ceiling during the initial stages of development. A propane-air burner yielding a heat source strength between 1.0 kW and 1.6 kW was used to simulate the fire, and measurements proved that this heat source did satisfactorily represent a source of buoyancy only. The ceiling consisted of a 1/16" steel plate of 0.91 m. diameter, insulated on the upper side. The ceiling height was adjustable between 0.5 m and 0.91 m. Temperature measurements were carried out in the plume, ceiling jet, and on the ceiling.
Heat transfer data were obtained by using the transient method and applying corrections for the radial conduction along the ceiling and losses through the insulation material. The ceiling heat transfer coefficient was based on the adiabatic ceiling jet temperature (recovery temperature) reached after a long time. A parameter involving the source strength Q and ceiling height H was found to correlate measurements of this temperature and its radial variation. A similar parameter for estimating the ceiling heat transfer coefficient was confirmed by the experimental results.
This investigation therefore provides reasonable estimates for the heat transfer from a buoyant gas plume to a ceiling in the axisymmetric case, for the stagnation region where such heat transfer is a maximum and for the ceiling jet region (r/H ≤ 0.7). A comparison with data from experiments which involved larger heat sources indicates that the predicted scaling of temperatures and heat transfer rates for larger scale fires is adequate.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.
Resumo:
The problem of s-d exchange scattering of conduction electrons off localized magnetic moments in dilute magnetic alloys is considered employing formal methods of quantum field theoretical scattering. It is shown that such a treatment not only allows for the first time, the inclusion of multiparticle intermediate states in single particle scattering equations but also results in extremely simple and straight forward mathematical analysis. These equations are proved to be exact in the thermodynamic limit. A self-consistent integral equation for electron self energy is derived and approximately solved. The ground state and physical parameters of dilute magnetic alloys are discussed in terms of the theoretical results. Within the approximation of single particle intermediate states our results reduce to earlier versions. The following additional features are found as a consequence of the inclusion of multiparticle intermediate states;
(i) A non analytic binding energy is pre sent for both, antiferromagnetic (J < o) and ferromagnetic (J > o) couplings of the electron plus impurity system.
(ii) The correct behavior of the energy difference of the conduction electron plus impurity system and the free electron system is found which is free of unphysical singularities present in earlier versions of the theories.
(iii) The ground state of the conduction electron plus impurity system is shown to be a many-body condensate state for J < o and J > o, both. However, a distinction is made between the usual terminology of "Singlet" and "Triplet" ground states and nature of our ground state.
(iv) It is shown that a long range ordering, leading to an ordering of the magnetic moments can result from a contact interaction such as the s-d exchange interaction.
(v) The explicit dependence of the excess specific heat of the Kondo systems is obtained and found to be linear in temperatures as T→ o and T ℓnT for 0.3 T_K ≤ T ≤ 0.6 T_K. A rise in (ΔC/T) for temperatures in the region 0 < T ≤ 0.1 T_K is predicted. These results are found to be in excellent agreement with experiments.
(vi) The existence of a critical temperature for Ferromagnetic coupling (J > o) is shown. On the basis of this the apparent contradiction of the simultaneous existence of giant moments and Kondo effect is resolved.
Resumo:
The yeast Saccharomyces cerevisiae contains a family of hsp70 related genes. One member of this family, SSA1, encodes a 70kD heat-shock protein which in addition to its heat inducible expression has a significant basal level of expression. The first 500 bp upstream of the SSA1 start point of transcription was examined by DNAse I protection analysis. The results reveal the presence of at least 14 factor binding sites throughout the upstream promoter region. The function of these binding sites has been examined using a series of 5' promoter deletions fused to the recorder gene lacZ in a centromere-containing yeast shuttle vector. The following sites have been identified in the promoter and their activity in yeast determined individually with a centromere-based recorder plasmid containing a truncated CYC1 /lacZ fusion: a heat-shock element or HSE which is sufficient to convey heat-shock response on the recorder plasmid; a homology to the SV40 'core' sequence which can repress the GCN4 recognition element (GCRE) and the yAP1 recognition element (ARE), and has been designated a upstream repression element or URE; a 'G'-rich region named G-box which can also convey heatshock response on the recorder plasmid; and a purine-pyrimidine alternating sequence name GT-box which is an activator of transcription. A series of fusion constructs were made to identify a putative silencer-like element upstream of SSA1. This element is position dependent and has been localized to a region containing both an ABF1 binding site and a RAP1 binding site. Five site-specific DNA-binding factors are identified and their purification is presented: the heat-shock transcription factor or HSTF, which recognizes the HSE; the G-box binding factor or GBF; the URE recognition factor or URF; the GT-box binding factor; and the GC-box binding factor or yeast Sp1.
Resumo:
We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda transition temperature, Tλ,is enhanced by a constant heat flux, Q. The heat capacity at constant Q, CQ,is predicted to diverge at a temperature Tc(Q) < Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q),below the theoretical value, Tc(Q). Our measurements of CQ were taken using the discrete pulse method at fourteen different heat flux values in the range 1µW/cm2 ≤ Q≤ 4µW /cm2. The excess heat capacity ∆CQ we measure has the predicted scaling behavior as a function of T and Q:∆CQ • tα ∝ (Q/Qc)2, where QcT) ~ t2ν is the critical heat current that results from the inversion of the equation for Tc(Q). We find that if the theoretical value of Tc( Q) is correct, then ∆CQ is considerably larger than anticipated. On the other hand,if Tc(Q)≈ TDAS(Q),then ∆CQ is the same magnitude as the theoretically predicted enhancement.