18 resultados para core-shell-polymerization
Resumo:
We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. This led to predictions of improved materials, some of which were subsequently validated with experiments by our collaborators.
In part I, the challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface, and hence we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine all intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We found that the rate determination step (RDS) was the Oad hydration reaction (Oad + H2Oad -> OHad + OHad) in both cases, but that the barrier for pure Pt of 0.50 eV is reduced to 0.48 eV for Pt3Os, which at 80 degrees C would increase the rate by 218%. We collaborated with the Pu-Wei Wu’s group to carry out experiments, where we found that the dealloying process-treated Pt2Os catalyst showed two-fold higher activity at 25 degrees C than pure Pt and that the alloy had 272% improved stability, validating our theoretical predictions.
We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML/Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had little effect, with the same RDS barrier 0.37 eV. This shows that the ligand effect (the electronic structure modification resulting from the Os substrate) plays a more important role than the strain effect, and is responsible for the improved activity of the core- shell catalyst. Experimental materials characterization proves the core-shell feature of our catalyst. The electrochemical experiment for Pt2ML/Os/C showed 3.5 to 5 times better ORR activity at 0.9V (vs. NHE) in 0.1M HClO4 solution at 25 degrees C as compared to those of commercially available Pt/C. The excellent correlation between experimental half potential and the OH binding energies and RDS barriers validate the feasibility of predicting catalyst activity using QM calculation and a simple Langmuir–Hinshelwood model.
In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. Experimental results suggested that the Ni4Fe alloy improves both its activity and stability compared to pure Ni. To understand the atomistic origin of this, we carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This weaker C binding energy is expected to make coke formation less favorable, explaining why Ni4Fe has better coking resistance. This result confirms the experimental observation. The reaction energy barriers for CHx decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni.
In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3+ M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field.
Resumo:
The synthesis of a sterically tailored ligand array (M)_2((C_5H_2-2-Si(CH_3)_3-4-C(CH_3)_3)S_2i(CH_3)_2]("M_2Bp") (M = Li, 16; K, 19) is described. Transmetallation of Li_2Bp with YCl_3(THF)_3 affords exclusively the C_2 symmetric product rac-[BpY(µ_2-Cl)_2Li(THF)_2], 20. A X-ray crystal structure of 20 has been determined; triclinic, P1, a= 13.110 (8), b = 17.163 (15), c = 20.623 (14) Å, α = 104.02 (7), β = 99.38 (5), γ = 100.24 (6)° , Z = 4, R = 0.056. Transmetallation of K_2Bp with YCl_3(THF)_3 affords the halide free complex rac-BpYCl, 23. The corresponding rac-BpLaCl, 28, is prepared in an anlogous manner. In all cases the achiral meso isomer is not obtained since only for the racemic isomers are the unfavorable steric interactions between the Si(CH3)_3 groups in the narrow portion of the [Cp-M'-Cp] wedge avoided. Alkylation of 20 or 23 with LiCH(Si(CH_3)_3)_2 affords rac-BpYCH(Si(CH_3)_3)_2, 26 in good yield. Alkylation of 28 with LiCH(Si(CH_3)_3)_2 affords rac-BpLaCH(Si(CH_3)_3)_2 29. Hydrogenation of 26 cleanly affords the bridging hydride species [BpY(µ_2-H)]_2, 27, as the homochiral (R,R) and (S,S) dimeric pairs. 26 is an efficient initiator for the polymerization of ethylene to high molecular weight linear polyethylene. 27 catalyzes the polymerization of propylene (25% v/v in methylcyclohexane) and neat samples of 1-butene, 1-pentene, 1-hexene to moderately high molecular weight polymers: polypropylene (M_n = 4,200, PDI 2.32, T_m 157 °C); poly-1-butene (M_n = 8,500, PDI 3.44, T_m 105 °C); poly-1-pentene (M_n = 20,000, PDI 1.99, T_m 73 °C); poly-1-hexene (M_n = 24,000, PDI 1.75, T_m < 25 °C). ^(13)C NMR spectra at the pentad analysis level indicates that the degree of isotacticity is 99% mmmm for all polymer samples. 27 is the first single component iso-specific α-olefin polymerization catalyst. The presumed origins of the high isospecificity are presented.
Resumo:
Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.
Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.
A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.
P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.
Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.
Resumo:
This thesis addresses the fine structure, both radial and lateral, of compressional wave velocity and attenuation of the Earth's core and the lowermost mantle using waveforms, differential travel times and amplitudes of PKP waves, which penetrate the Earth's core.
The structure near the inner core boundary (ICB) is studied by analyzing waveforms of a regional sample. The waveform modeling approach is demonstrated to be an effective tool for constrainning the ICB structure. The best model features a sharp velocity jump of 0.78km/s at the ICB and a low velocity gradient at the lowermost outer core (indicating possible inhomogeneity) and high attenuation at the top of the inner core.
A spherically symmetric P-wave model of the core, is proposed from PKP differential times, waveforms and amplitudes. The ICB remains sharp with a velocity jump of 0. 78km/ s. A very low velocity gradient at the base of the fluid core is demonstrated to be a robust feature, indicating inhomogeneity is practically inevitable. The model also indicates that the attenuation in the inner core decreases with depth. The velocity at D" is smaller than PREM.
The inner core is confirmed to be very anisotropic, possessing a cylindrical symmetry around the Earth spin axis with the N-S direction 3% faster than the E-W direction. All of the N-S rays through the inner core were found to be faster than the E-W rays by 1.5 to 3.5s. Exhaustive data selection and efforts in insolating contributions from the region above ensure that this is an inner core feature.
The anisotropy at the very top of the inner core is found to be distinctly different from the deeper part. The top 60km of the inner core is not anisotropic. From 60km to 150km, there appears to be a transition from isotropy to anisotropy.
PKP differential travel times are used to study the P velocity structure in D". Systematic regional variations of up to 2s in AB-DF times were observed, attributed primarily to heterogeneities in the lower 500km of the mantle. However, direct comparisons with tomographic models are not successful.
Resumo:
Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.
Resumo:
Two major topics are covered: the first chapter is focused on the development of post-metallocene complexes for propylene polymerization. The second and third chapters investigate the consequences of diisobutylaluminum hydride (HAliBu2) additives in zirconocene based polymerization systems.
The synthesis, structure, and solution behavior of early metal complexes with a new tridentate LX2 type ligand, bis(thiophenolate)pyridine ((SNS) = (2-C6H4S)2-2,6-C5H3N) are investigated. SNS complexes of Ti, Zr, and Ta having dialkylamido coligands were synthesized and structurally characterized. The zirconium complex, (SNS)Zr(NMe2)2, displays C2 symmetry in the solid state. Solid-state structures of tantalum complexes (SNS)Ta(NMe2)3 and (SNS)TaCl(NEt2)2 also display pronounced C2 twisting of the SNS ligand. 1D and 2D NMR experiments show that (SNS)Ta(NMe2)3 is fluxional with rotation about the Ta N(amide) bonds occurring on the NMR timescale. The fluxional behavior of (SNS)TaCl(NEt2)2 in solution was also studied by variable temperature 1H NMR. Observation of separate signals for the diastereotopic protons of the methylene unit of the diethylamide indicates that the complex remains locked on the NMR timescale in one diastereomeric conformation at temperatures below -50 °C.
Reduction of Zr(IV) metallocenium cations with sodium amalgam (NaHg) produces EPR signals assignable to Zr(III) metallocene complexes. Thus, chloro-bridged heterobinuclear ansa-zirconocenium cation [((SBI))Zr(μ-Cl)2AlMe2]+B(C6F5)4¯ (SBI = rac-dimethylsilylbis(1-indenyl)), gives rise to an EPR signal assignable to the complex (SBI)ZrIII(μ-Cl)2AlMe2, while (SBI)ZrIII-Me and (SBI)ZrIII(-H)2AliBu2 are formed by reduction of [(SBI)Zr(μ-Me)2AlMe2]+B(C6F5)4¯ and [(SBI)Zr(μ-H)3(AliBu2)2]+B(C6F5)4¯, respectively. These products are also formed, along with (SBI)ZrIII-iBu and [(SBI)ZrIII]+ AlR4¯ when (SBI)ZrMe2 reacts with HAliBu2, eliminating isobutane en route to the Zr(III) complex. Studies concerning the interconversion reactions between these and other (SBI)Zr(III) complexes and reaction mechanisms involved in their formation are also reported.
The addition of HAliBu2 to precatalyst [(SBI)Zr(µ-H)3(AliBu2)2]+ significantly slows the polymerization of propylene and changes the kinetics of polymerization from 1st to 2nd order with respect to propylene. This is likely due to competitive inhibition by HAliBu2. When the same reaction is investigated using [(nBuCp)2Zr(μ-H)3(AliBu2)2]+, hydroalumination between propylene and HAliBu2 is observed instead of propylene polymerization.
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
This dissertation covers progress with bimetallic polymerization catalysts. The complexes we have designed were aimed at expanding the capabilities of homogeneous polymerization catalysts by taking advantage of multimetallic effects. Such effects were examined in group 4 and group 10 bimetallic complexes; proximity and steric repulsion were determined to be major factors in the effects observed.
Chapters 2 and 3 introduce the rigid p-terphenyl dinucleating framework utilized in most of this thesis. The permethylation of the central arene allows for the separation of syn and anti atropisomers of the terphenyl compounds. Kinetic studies were carried out to examine the isomerization of the dinucleating bis(salicylaldimine) ligand precursors. Metallation of the syn and anti bis(salicylaldimine)s using Ni(Me)2(tmeda) and excess pyridine afforded dinickel bisphenoxyiminato complexes with a methyl and a pyridyl ligand on each nickel. The syn and anti atropisomers of the dinickel complexes were structurally characterized and utilized in ethylene and ethylene/α-olefin polymerizations. Monometallic analogues were also synthesized and tested for polymerization activity. Ethylene polymerizations were performed in the presence of primary, secondary, and tertiary amines – additives that generally deactivate nickel polymerization catalysts. Inhibition of this deactivation was observed with the syn atropisomer of the bimetallic species, but not with the anti or monometallic analogues. A mechanism was proposed wherein steric repulsion of the substituents on proximal nickel centers disfavors simultaneous ligation of base to both of the metal centers. The bimetallic effect has been explored with respect to size and binding ability of the added base.
Chapter 4 presents the optimization of the bisphenoxyimine ligand synthesis and synthesis of syn and anti m-terphenyl analogues. Metallation with NiClMe(PMe3)2 yielded phosphine-ligated dinickel complexes, which have been structurally characterized. Ethylene/1-hexene copolymerizations in the presence of amines using Ni(COD)2 as a phosphine scavenger showed significantly improved activity relative to the pyridine-ligated analogues. Incorporation of amino olefins in copolymerizations with ethylene was accomplished, and a mechanism was proposed based on proximal effects. Copolymerization trials with a variety of amino olefins and ethylene/1-hexene/amino olefin terpolymerizations were completed.
Early transition metal complexes based on the rigid p-terphenyl framework were designed with a variety of donor sets (Chapter 5 and Appendix B). Chapter 5 details the use of syn dizirconium di[amine bis(phenolate)] complexes for isoselective 1-hexene and propylene homopolymerizations. Ligand variation and monometallic complexes were studied to determine the origin of tacticity control. A mechanistic proposal was presented based on the symmetry at zirconium and the steric effects of the proximal metal center. Appendix B covers additional studies of bimetallic early transition metal complexes based on the p-terphenyl. Dititanium, dizirconium, and asymmetric complexes with bisphenoxyiminato ligands and derivatives thereof were targeted. Progress toward the synthesis of these complexes is described along with preliminary polymerization data. 1-hexene/diene copolymerizations and attempted polymerizations in the presence of ethers and esters with the syn dizirconium di[amine bis(phenolate)] complexes demonstrate the potential for further applications of this system in catalysis.
Appendix A includes work toward palladium catalysts for insertion polymerization of polar monomers. These complexes were based on dioxime and diimine frameworks with the intent of binding Lewis acidic metals at the oxime oxygens, at pendant phenolic donors, or at pendant aminediol moieties. The synthesis and structural characterization of a number of palladium and Lewis acid complexes is presented. Due to the instability of the desired species, efforts toward isolation of the desired complexes proved unsuccessful, though preliminary ethylene/methyl acrylate copolymerizations using in situ activation of the palladium species were attempted.
Resumo:
The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.
In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.
Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.
In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.
Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.
Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.
Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.
Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.
Resumo:
The initial objective of Part I was to determine the nature of upper mantle discontinuities, the average velocities through the mantle, and differences between mantle structure under continents and oceans by the use of P'dP', the seismic core phase P'P' (PKPPKP) that reflects at depth d in the mantle. In order to accomplish this, it was found necessary to also investigate core phases themselves and their inferences on core structure. P'dP' at both single stations and at the LASA array in Montana indicates that the following zones are candidates for discontinuities with varying degrees of confidence: 800-950 km, weak; 630-670 km, strongest; 500-600 km, strong but interpretation in doubt; 350-415 km, fair; 280-300 km, strong, varying in depth; 100-200 km, strong, varying in depth, may be the bottom of the low-velocity zone. It is estimated that a single station cannot easily discriminate between asymmetric P'P' and P'dP' for lead times of about 30 sec from the main P'P' phase, but the LASA array reduces this uncertainty range to less than 10 sec. The problems of scatter of P'P' main-phase times, mainly due to asymmetric P'P', incorrect identification of the branch, and lack of the proper velocity structure at the velocity point, are avoided and the analysis shows that one-way travel of P waves through oceanic mantle is delayed by 0.65 to 0.95 sec relative to United States mid-continental mantle.
A new P-wave velocity core model is constructed from observed times, dt/dΔ's, and relative amplitudes of P'; the observed times of SKS, SKKS, and PKiKP; and a new mantle-velocity determination by Jordan and Anderson. The new core model is smooth except for a discontinuity at the inner-core boundary determined to be at a radius of 1215 km. Short-period amplitude data do not require the inner core Q to be significantly lower than that of the outer core. Several lines of evidence show that most, if not all, of the arrivals preceding the DF branch of P' at distances shorter than 143° are due to scattering as proposed by Haddon and not due to spherically symmetric discontinuities just above the inner core as previously believed. Calculation of the travel-time distribution of scattered phases and comparison with published data show that the strongest scattering takes place at or near the core-mantle boundary close to the seismic station.
In Part II, the largest events in the San Fernando earthquake series, initiated by the main shock at 14 00 41.8 GMT on February 9, 1971, were chosen for analysis from the first three months of activity, 87 events in all. The initial rupture location coincides with the lower, northernmost edge of the main north-dipping thrust fault and the aftershock distribution. The best focal mechanism fit to the main shock P-wave first motions constrains the fault plane parameters to: strike, N 67° (± 6°) W; dip, 52° (± 3°) NE; rake, 72° (67°-95°) left lateral. Focal mechanisms of the aftershocks clearly outline a downstep of the western edge of the main thrust fault surface along a northeast-trending flexure. Faulting on this downstep is left-lateral strike-slip and dominates the strain release of the aftershock series, which indicates that the downstep limited the main event rupture on the west. The main thrust fault surface dips at about 35° to the northeast at shallow depths and probably steepens to 50° below a depth of 8 km. This steep dip at depth is a characteristic of other thrust faults in the Transverse Ranges and indicates the presence at depth of laterally-varying vertical forces that are probably due to buckling or overriding that causes some upward redirection of a dominant north-south horizontal compression. Two sets of events exhibit normal dip-slip motion with shallow hypocenters and correlate with areas of ground subsidence deduced from gravity data. Several lines of evidence indicate that a horizontal compressional stress in a north or north-northwest direction was added to the stresses in the aftershock area 12 days after the main shock. After this change, events were contained in bursts along the downstep and sequencing within the bursts provides evidence for an earthquake-triggering phenomenon that propagates with speeds of 5 to 15 km/day. Seismicity before the San Fernando series and the mapped structure of the area suggest that the downstep of the main fault surface is not a localized discontinuity but is part of a zone of weakness extending from Point Dume, near Malibu, to Palmdale on the San Andreas fault. This zone is interpreted as a decoupling boundary between crustal blocks that permits them to deform separately in the prevalent crustal-shortening mode of the Transverse Ranges region.
Resumo:
Using density functional theory, we studied the fundamental steps of olefin polymerization for zwitterionic and cationic Group IV ansa-zirconocenes and a neutral ansa- yttrocene. Complexes [H2E(C5H4)2ZrMe]n (n = 0: E = BH2 (1), BF2 (2), AlH2(3); n = +: E = CH2(4), SiH2(5)) and H2Si(C5H4)2YMe were used as computational models. The largest differences among these three classes of compounds were the strength of olefin binding and the stability of the β-agostic alkyl intermediate towards β-hydrogen elimination. We investigated the effect of solvent on the reaction energetics for land 5. We found that in benzene the energetics became very similar except that a higher olefin insertion barrier was calculated for 1. The calculated anion affinity of [CH3BF3]- was weaker towards 1 than 5. The calculated olefin binding depended primarily on the charge of the ansa linker, and the olefin insertion barrier was found to decrease steadily in the following order: [H2C(C5H4)2ZrMe]+ > [F2B(C5H4)2ZrMe] ≈ [H2B(C5H4)2ZrMe] > [H2Si(C5H4)2ZrMe]+ > [H2Al(C5H4)2ZrMe].
We prepared ansa-zirconocene dicarbonyl complexes Me2ECp2Zr(CO)2 (E = Si, C), and t-butyl substituted complexes (t-BuCp)2Zr(CO)2, Me2E(t-BuCp)2Zr(CO)2 (E = Si, C), (Me2Si)2(t-BuCp)2Zr(CO)2 as well as analogous zirconocene complexes. Both the reduction potentials and carbonyl stretching frequencies follow the same order: Me2SiCp2ZrCl2> Me2CCp2ZrCl2> Cp2ZrCl2> (Me2Si)2Cp2ZrCl2. This ordering is a result of both the donating abilities of the cyclopentadienyl substituents and the orientation of the cyclopentadiene rings. Additionally, we prepared a series of analogous cationic zirconocene complexes [LZrOCMe3][MeB(C6F5)3] (L = CP2, Me2SiCp2, Me2CCP2, (Me2Si)2Cp2) and studied the kinetics of anion dissociation. We found that the enthalpy of anion dissociation increased from 10.3 kcal•mol-1 to 17.6 kcal•mol-1 as exposure of the zirconium center increased.
We also prepared series of zirconocene complexes bearing 2,2-dimethyl-2-sila-4-pentenyl substituents (and methyl-substituted olefin variants). Methide abstraction with B(C6F5) results in reversible coordination of the tethered olefin to the cationic zirconium center. The kinetics of olefin dissociation have been examined using NMR methods, and the effects of ligand variation for unlinked, singly [SiMe2]-linked and doubly [SiMe2]-linked bis(cyclopentadienyl) arrangements has been compared (ΔG‡ for olefin dissociation varies from 12.8 to 15.6 kcal•mol-1). Methide abstraction from 1,2-(SiMe2)2(η5-C5H3)2Zr(CH3)-(CH2CMe2CH2CH = CH2) results in rapid β-allyl elimination with loss of isobutene yielding the allyl cation [{1,2-(SiMe2)2(η5-C5H3)2Zr(η3-CH2CH=CH2)]+.
Resumo:
This thesis describes the preparation, characterization, and application of welldefined single-component group ten salicylaldimine complexes for the polymerization of ethylene to high molecular weight materials as well as the copolymerization of ethylene and functionalized olefins. After an initial introduction to the field, Chapter 2 describes the preparation of PPh3 complexes that contain a series of modified salicylaldimine and naphthaldimine ligands. Such complexes were activated for polymerization by the addition of cocatalysts such as Ni(COD)2 or B(C6F5)3. As the steric demand of the ligand set increased-the molecular weight, polymerization activity, and lifetime of the catalyst was observed to increase. In fact, complexes containing "bulky" ligands, such as the [Anthr,HSal] ligand (2.5), were found to be highly-active single component complexes for the polymerization of ethylene. Model hydrido compound were prepared-allowing for a better understanding of both the mechanism of polymerization and one mode of decomposition.
Chapter 3 describes the effect which additives play on neutral NiII polymerization catalysts such as 2.5. The addition of excess ethers, esters, ketones, anhydrides, alcohols, and water do not deactivate the catalysts for polymerization. However, the addition of excess acid, thiols, and phosphines was observed to shut-down catalysis. Since excess phosphine was found to inhibit catalysis, "phosphine-free" complexes, such as the acetonittile complex (3.26), were prepared. The acetonitrile complex was found to be the most active neutral polymerization catalyst prepared to date.
Chapter 4 outlines the use of catalyst 2.5 and 3.26 for the preparation of linear functionalized copolymers containing alcohols, esters, anhydrides, and ethers. Copolymers can be prepared with γ-functionalized-α-olefins, functionalized norbornenes, and functionalized tricyclononenes, with up to 30 mol% comonomer incorporation.
Chapter 5 outlines the preparation of a series of PtII alkyl/olefin salicylaldimine complexes which serve as models for the active species in the NiII-catalyzed polymerization process. Understanding the nature of the M-olefin interaction as a the electronic and steric properties of the salicylaldimine ligand is varied has allowed for a number of predictions about the design of future polymerization systems.
Resumo:
A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.
C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.
A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.
Resumo:
Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.
Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.
A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.
Resumo:
The isotope effect on propagation rate was determined for four homogeneous ethylene polymerization systems. The catalytic system Cp_2Ti(Et)Cl + EtA1Cl_2 has a k^H_p/k^D_p = 1.035 ± 0.03. This result strongly supports an insertion mechanism which does not involve a hydrogen migration during the rate determining step of propagation (Cossee mechanism). Three metal-alkyl free systems were also studied. The catalyst I_2 (PMe_3)_3Ta(neopentylidene)(H) has a k^H_p/k^D_p = 1.709. It is interpreted as a primary isotope effect involving a non-linear a-hydrogen migration during the rate determining step of propagation (Green mechanism). The lanthanide complexes Cp*_2LuMe•Et_2O and Cp*_2YbMe•Et_2O have a k^H_p/k^D_p = 1.46 and 1.25, respectively. They are interpreted as primary isotope effects due to a partial hydrogen migration during the rate determining step of propagation.
The presence of a precoordination or other intermediate species during the polymerization of ethylene by the mentioned metal-alkyl free catalysts was sought by low temperature NMR spectroscopy. However, no evidence for such species was found. If they exist, their concentrations are very small or their lifetimes are shorter than the NMR time scale.
Two titanocene (alkenyl)chlorides (hexenyl 1 and heptenyl 2 were prepared from titanocene dichloride and a THF solution of the corresponding alkenylmagnesium chloride. They do not cyclize in solution when alone, but cyclization to their respective titanocene(methyl(cycloalkyl) chlorides occurs readily in the presence of a Lewis acid. It is demonstrated that such cyclization occurs with the alkenyl ligand within the coordination sphere of the titanium atom. Cyclization of 1 with EtAlCl_2 at 0°C occurs in less than 95 msec (ethylene insertion time), as shown by the presence of 97% cyclopentyl-capped oligomers when polymerizing ethylene with this system. Some alkyl exchange occurs (3%). Cyclization of 2 is slower under the same reaction conditions and is not complete in 95 msec as shown by the presence of both cyclohexyl-capped oligomers (35%) and odd number α-olefin oligomers (50%). Alkyl exchange is more extensive as evidenced by the even number n-alkanes (15%).
Cyclization of 2-d_1 (titanocene(hept-6-en-1-yl-1-d_1)chloride) with EtA1Cl_2 demonstrated that for this system there is no α-hydrogen participation during said process. The cyclization is believed to occur by a Cossee-type mechanism. There was no evidence for precoordination of the alkenyl double bond during the cyclization process.