30 resultados para Partial Order


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question of finding variational principles for coupled systems of first order partial differential equations is considered. Using a potential representation for solutions of the first order system a higher order system is obtained. Existence of a variational principle follows if the original system can be transformed to a self-adjoint higher order system. Existence of variational principles for all linear wave equations with constant coefficients having real dispersion relations is established. The method of adjoining some of the equations of the original system to a suitable Lagrangian function by the method of Lagrange multipliers is used to construct new variational principles for a class of linear systems. The equations used as side conditions must satisfy highly-restrictive integrability conditions. In the more difficult nonlinear case the system of two equations in two independent variables can be analyzed completely. For systems determined by two conservation laws the side condition must be a conservation law in addition to satisfying the integrability conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal reaction between nitrogen dioxide and acetaldehyde in the gas phase was investigated at room temperature and atmospheric pressure. The initial rate of disappearance of nitrogen dioxide was 1.00 ± 0.03 order with respect to nitrogen dioxide and 1.00 ± 0.07 order with respect to acetaldehyde. An initial second order rate constant of (8.596 ± 0.189) x 10-3 1.mole-1 sec-1 was obtained at 22.0 ± 0.1 °C and a total pressure of one atmosphere. The activation energy of the reaction was 12,900 cal/mole in the temperature range between 22°C and 122°C.

The products of the reaction were nitric oxide, carbon dioxide, methyl nitrite, nitromethane and a trace amount of trans-dimeric nitrosomethane. The addition of nitric oxide increased the rate of formation of nitromethane and decreased the rate of formation of methyl nitrite. There were no measurable surface effects due to the addition of glass wool or glass beads to the reactor.

Reactants and products were analyzed by gas chromatography. A mechanism was proposed incorporating the principal features of the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.

The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.

To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of bifurcation of solutions to two-point boundary value problems is developed for a system of nonlinear first order ordinary differential equations in which the bifurcation parameter is allowed to appear nonlinearly. An iteration method is used to establish necessary and sufficient conditions for bifurcation and to construct a unique bifurcated branch in a neighborhood of a bifurcation point which is a simple eigenvalue of the linearized problem. The problem of bifurcation at a degenerate eigenvalue of the linearized problem is reduced to that of solving a system of algebraic equations. Cases with no bifurcation and with multiple bifurcation at a degenerate eigenvalue are considered.

The iteration method employed is shown to generate approximate solutions which contain those obtained by formal perturbation theory. Thus the formal perturbation solutions are rigorously justified. A theory of continuation of a solution branch out of the neighborhood of its bifurcation point is presented. Several generalizations and extensions of the theory to other types of problems, such as systems of partial differential equations, are described.

The theory is applied to the problem of the axisymmetric buckling of thin spherical shells. Results are obtained which confirm recent numerical computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.

To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.

Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.

With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.

Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.

Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Storage systems are widely used and have played a crucial rule in both consumer and industrial products, for example, personal computers, data centers, and embedded systems. However, such system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new systems and devices, such as distributed storage and flash memory, respectively. Information theory, on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes to solve challenges in data storage using a variety of coding techniques, so that storage becomes faster, more affordable, and more reliable.

We consider the system level and study the integration of RAID schemes and distributed storage. Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where disks correspond to symbols in the code and are located in a (distributed) network. Specifically, RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear that when two symbols are erased, one needs to access and transmit all the remaining information to rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction of information that one needs to access and transmit in order to correct a single erasure? In Part I we will show that the lower bound of 1/2 is achievable and that the result can be generalized to codes with arbitrary number of parities and optimal rebuilding.

We consider the device level and study coding and modulation techniques for emerging non-volatile memories such as flash memory. In particular, rank modulation is a novel data representation scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. In order to decrease the decoding complexity, we propose two variations of this scheme in Part II: bounded rank modulation where only small sliding windows of cells are sorted to generated permutations, and partial rank modulation where only part of the n cells are used to represent data. We study limits on the capacity of bounded rank modulation and propose encoding and decoding algorithms. We show that overlaps between windows will increase capacity. We present Gray codes spanning all possible partial-rank states and using only ``push-to-the-top'' operations. These Gray codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence of integers generating all possible partial permutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A classical question in combinatorics is the following: given a partial Latin square $P$, when can we complete $P$ to a Latin square $L$? In this paper, we investigate the class of textbf{$epsilon$-dense partial Latin squares}: partial Latin squares in which each symbol, row, and column contains no more than $epsilon n$-many nonblank cells. Based on a conjecture of Nash-Williams, Daykin and H"aggkvist conjectured that all $frac{1}{4}$-dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this novel technique to study $ epsilon$-dense partial Latin squares that contain no more than $delta n^2$ filled cells in total.

In Chapter 2, we construct completions for all $ epsilon$-dense partial Latin squares containing no more than $delta n^2$ filled cells in total, given that $epsilon < frac{1}{12}, delta < frac{ left(1-12epsilonright)^{2}}{10409}$. In particular, we show that all $9.8 cdot 10^{-5}$-dense partial Latin squares are completable. In Chapter 4, we augment these results by roughly a factor of two using some probabilistic techniques. These results improve prior work by Gustavsson, which required $epsilon = delta leq 10^{-7}$, as well as Chetwynd and H"aggkvist, which required $epsilon = delta = 10^{-5}$, $n$ even and greater than $10^7$.

If we omit the probabilistic techniques noted above, we further show that such completions can always be found in polynomial time. This contrasts a result of Colbourn, which states that completing arbitrary partial Latin squares is an NP-complete task. In Chapter 3, we strengthen Colbourn's result to the claim that completing an arbitrary $left(frac{1}{2} + epsilonright)$-dense partial Latin square is NP-complete, for any $epsilon > 0$.

Colbourn's result hinges heavily on a connection between triangulations of tripartite graphs and Latin squares. Motivated by this, we use our results on Latin squares to prove that any tripartite graph $G = (V_1, V_2, V_3)$ such that begin{itemize} item $|V_1| = |V_2| = |V_3| = n$, item For every vertex $v in V_i$, $deg_+(v) = deg_-(v) geq (1- epsilon)n,$ and item $|E(G)| > (1 - delta)cdot 3n^2$ end{itemize} admits a triangulation, if $epsilon < frac{1}{132}$, $delta < frac{(1 -132epsilon)^2 }{83272}$. In particular, this holds when $epsilon = delta=1.197 cdot 10^{-5}$.

This strengthens results of Gustavsson, which requires $epsilon = delta = 10^{-7}$.

In an unrelated vein, Chapter 6 explores the class of textbf{quasirandom graphs}, a notion first introduced by Chung, Graham and Wilson cite{chung1989quasi} in 1989. Roughly speaking, a sequence of graphs is called "quasirandom"' if it has a number of properties possessed by the random graph, all of which turn out to be equivalent. In this chapter, we study possible extensions of these results to random $k$-edge colorings, and create an analogue of Chung, Graham and Wilson's result for such colorings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What kinds of motion can occur in classical mechanics? We address this question by looking at the structures traced out by trajectories in phase space; the most orderly, completely integrable systems are characterized by phase trajectories confined to low-dimensional, invariant tori. The KAM theory examines what happens to the tori when an integrable system is subjected to a small perturbation and finds that, for small enough perturbations, most of them survive.

The KAM theory is mute about the disrupted tori, but, for two-dimensional systems, Aubry and Mather discovered an astonishing picture: the broken tori are replaced by "cantori," tattered, Cantor-set remnants of the original invariant curves. We seek to extend Aubry and Mather's picture to higher dimensional systems and report two kinds of studies; both concern perturbations of a completely integrable, four-dimensional symplectic map. In the first study we compute some numerical approximations to Birkhoff periodic orbits; sequences of such orbits should approximate any higher dimensional analogs of the cantori. In the second study we prove converse KAM theorems; that is, we use a combination of analytic arguments and rigorous, machine-assisted computations to find perturbations so large that no KAM tori survive. We are able to show that the last few of our Birkhoff orbits exist in a regime where there are no tori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.

In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-thrust guidance problem is defined as the minimum terminal variance (MTV) control of a space vehicle subjected to random perturbations of its trajectory. To accomplish this control task, only bounded thrust level and thrust angle deviations are allowed, and these must be calculated based solely on the information gained from noisy, partial observations of the state. In order to establish the validity of various approximations, the problem is first investigated under the idealized conditions of perfect state information and negligible dynamic errors. To check each approximate model, an algorithm is developed to facilitate the computation of the open loop trajectories for the nonlinear bang-bang system. Using the results of this phase in conjunction with the Ornstein-Uhlenbeck process as a model for the random inputs to the system, the MTV guidance problem is reformulated as a stochastic, bang-bang, optimal control problem. Since a complete analytic solution seems to be unattainable, asymptotic solutions are developed by numerical methods. However, it is shown analytically that a Kalman filter in cascade with an appropriate nonlinear MTV controller is an optimal configuration. The resulting system is simulated using the Monte Carlo technique and is compared to other guidance schemes of current interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.