19 resultados para Null-Plane Gauge Conditions
Resumo:
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
Resumo:
In this thesis, we test the electroweak sector of the Standard Model of particle physics through the measurements of the cross section of the simultaneous production of the neutral weak boson Z and photon γ, and the limits on the anomalous Zγγ and ZZγ triple gauge couplings h3 and h4 with the Z decaying to leptons (electrons and muons). We analyze events collected in proton-proton collisions at center of mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarn. The analyzed events were recorded by the Compact Muon Solenoid detector at the Large Hadron Collider in 2011.
The production cross section has been measured for hard photons with transverse momentum greater than 15 GeV that are separated from the the final state leptons in the eta-phi plane by Delta R greater than 0.7, whose sum of the transverse energy of hadrons over the transverse energy of the photon in a cone around the photon with Delta R less than 0.3 is less than 0.5, and with the invariant mass of the dilepton system greater than 50 GeV. The measured cross section value is 5.33 +/- 0.08 (stat.) +/- 0.25 (syst.) +/- 0.12 (lumi.) picobarn. This is compatible with the Standard Model prediction that includes next-to-leading-order QCD contributions: 5.45 +/- 0.27 picobarn.
The measured 95 % confidence-level upper limits on the absolute values of the anomalous couplings h3 and h4 are 0.01 and 8.8E-5 for the Zγγ interactions, and, 8.6E-3 and 8.0E-5 for the ZZγ interactions. These values are also compatible with the Standard Model where they vanish in the tree-level approximation. They extend the sensitivity of the 2012 results from the ATLAS collaboration based on 1.02 inverse femtobarn of data by a factor of 2.4 to 3.1.
Resumo:
This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. It is focused mainly on two fundamental questions: First, what is the general structure of the singularities and Killing-Cauchy horizons produced in the collisions of exactly plane-symmetric gravitational waves? Second, under what conditions will the collisions of almost-plane gravitational waves (waves with large but finite transverse sizes) produce singularities?
In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and that generic initial data for the colliding plane waves always produce "pure" spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction.
In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wavefronts; i.e., it must leave behind tails in the spacetime region through which it passes. Next, the occurrence of spacetime singularities in the collisions of almost-plane waves is investigated. It is proved that if two colliding, almost-plane gravitational waves are initially exactly plane-symmetric across a central region of sufficiently large but finite transverse dimensions, then their collision produces a spacetime singularity with the same local structure as in the exact-plane-wave collision. Finally, it is shown that a singularity still forms when the central regions are only approximately plane-symmetric initially. Stated more precisely, it is proved that if the colliding almost-plane waves are initially sufficiently close to being exactly plane-symmetric across a bounded central region of sufficiently large transverse dimensions, then their collision necessarily produces spacetime singularities. In this case, nothing is now known about the local and global structures of the singularities.
Resumo:
We present a complete system for Spectral Cauchy characteristic extraction (Spectral CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method employs numerous innovative algorithms to efficiently calculate the Bondi strain, news, and flux.
Spectral CCE was envisioned to ensure physically accurate gravitational wave-forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO) and similar experiments, while working toward a template bank with more than a thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional parameter space.
The Bondi strain, news, and flux are physical quantities central to efforts to understand and detect astrophysical gravitational wave sources within the Simulations of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the first strong field probe of the Einstein field equation.
In a series of included papers, we demonstrate stability, convergence, and gauge invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt null code, while achieving a factor of 200 improvement in computational efficiency.
Spectral CCE represents a significant computational advance. It is the foundation upon which further capability will be built, specifically enabling the complete calculation of junk-free, gauge-free, and physically valid waveform data on the fly within SpEC.
Resumo:
The preparation and direct observation of triplet 2,4-dimethylene-1,3- cyclobutanediyl (1), the non-Kekule isomer of benzene, is described. The biradical was generated by photolysis of 5,6-dimethylene-2,3- diazabicyclo[2.1.1]hex-2-ene (2) (which was synthesized in several steps from benzvalene) under cryogenic, matrix-isolation conditions. Biradical 1 was characterized by EPR spectroscopy (│D/hc│ =0.0204 cm^(-1), │E/hc│ =0.0028 cm^(-1)) and found to have a triplet ground state. The Δm_s= 2 transition displays hyperfine splitting attributed to a 7.3-G coupling to the ring methine and a 5.9-G coupling to the exocyclic methylene protons. Several experiments, including application of the magnetophotoselection (mps) technique in the generation of biradical 1, have allowed a determination of the zero-field triplet sublevels as x = -0.0040, y = +0.0136, and z = -0.0096 cm^(-1), where x and y are respectively the long and short in-plane axes and z the out-of-plane axis of 1.
Triplet 1 is yellow-orange and displays highly structured absorption (λ_(max)= 506 nm) and fluorescence (λ_(max) = 510 nm) spectra, with vibronic spacings of 1520 and 620 cm^(-1) for absorption and 1570 and 620 cm^(-1) for emission. The spectra were unequivocally assigned to triplet 1 by the use of a novel technique that takes advantage of the biradical's photolability. The absorption є = 7200 M^(-1) cm^(-1) and f = 0.022, establishing that the transition is spin-allowed. Further use of the mps technique has demonstrated that the transition is x-polarized, and the excited state 1s therefore of B_(1g) symmetry, in accord with theoretical predictions.
Thermolysis or direct photolysis of diazene 2 in fluid solution produces 2,4- dimethylenebicyclo[l.l.0]butane (3), whose ^(l)H NMR spectrum (-80°C, CD_(2)Cl_(2)) consists of singlets at δ 4.22 and 3.18 in a 2:1 ratio. Compound 3 is thermally unstable and dimerizes with second-order kinetics between -80 and -25°C (∆H^(‡) = 6.8 kcal mol^(-1), (∆s^(‡) = -28 eu) by a mechanism involving direct combination of two molecules of 3 in the rate-determining step. This singlet-manifold reaction ultimately produces a mixture of two dimers, 3,8,9- trimethylenetricyclo[5.1.1.0^(2,5)]non-4-ene (75) and trans-3,10-dimethylenetricyclo[6.2.0.0^(2,5)]deca-4,8-diene (76t), with the former predominating. In contrast, triplet-sensitized photolysis of 2, which leads to triplet 1, provides, in addition to 75 and 76t, a substantial amount of trans-5,10- dimethylenetricyclo[6.2.0.0^(3,6)]deca-3,8-diene (77t) and small amounts of two unidentified dimers.
In addition, triplet biradical 1 ring-closes to 3 in rigid media both thermally (77-140 K) and photochemically. In solution 3 forms triplet 1 upon energy transfer from sensitizers having relatively low triplet energies. The implications of the thermal chemistry for the energy surfaces of the system are discussed.
Resumo:
Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.
An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.
Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.
Resumo:
The scalability of CMOS technology has driven computation into a diverse range of applications across the power consumption, performance and size spectra. Communication is a necessary adjunct to computation, and whether this is to push data from node-to-node in a high-performance computing cluster or from the receiver of wireless link to a neural stimulator in a biomedical implant, interconnect can take up a significant portion of the overall system power budget. Although a single interconnect methodology cannot address such a broad range of systems efficiently, there are a number of key design concepts that enable good interconnect design in the age of highly-scaled CMOS: an emphasis on highly-digital approaches to solving ‘analog’ problems, hardware sharing between links as well as between different functions (such as equalization and synchronization) in the same link, and adaptive hardware that changes its operating parameters to mitigate not only variation in the fabrication of the link, but also link conditions that change over time. These concepts are demonstrated through the use of two design examples, at the extremes of the power and performance spectra.
A novel all-digital clock and data recovery technique for high-performance, high density interconnect has been developed. Two independently adjustable clock phases are generated from a delay line calibrated to 2 UI. One clock phase is placed in the middle of the eye to recover the data, while the other is swept across the delay line. The samples produced by the two clocks are compared to generate eye information, which is used to determine the best phase for data recovery. The functions of the two clocks are swapped after the data phase is updated; this ping-pong action allows an infinite delay range without the use of a PLL or DLL. The scheme's generalized sampling and retiming architecture is used in a sharing technique that saves power and area in high-density interconnect. The eye information generated is also useful for tuning an adaptive equalizer, circumventing the need for dedicated adaptation hardware.
On the other side of the performance/power spectra, a capacitive proximity interconnect has been developed to support 3D integration of biomedical implants. In order to integrate more functionality while staying within size limits, implant electronics can be embedded onto a foldable parylene (‘origami’) substrate. Many of the ICs in an origami implant will be placed face-to-face with each other, so wireless proximity interconnect can be used to increase communication density while decreasing implant size, as well as facilitate a modular approach to implant design, where pre-fabricated parylene-and-IC modules are assembled together on-demand to make custom implants. Such an interconnect needs to be able to sense and adapt to changes in alignment. The proposed array uses a TDC-like structure to realize both communication and alignment sensing within the same set of plates, increasing communication density and eliminating the need to infer link quality from a separate alignment block. In order to distinguish the communication plates from the nearby ground plane, a stimulus is applied to the transmitter plate, which is rectified at the receiver to bias a delay generation block. This delay is in turn converted into a digital word using a TDC, providing alignment information.
Resumo:
In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.
The main results of the thesis are the following two theorems.
Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.
Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.
Besides this we also established the following results:
(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.
(2) MT holds for Ribet-type abelian varieties.
(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.
(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.
(5) For some abelian varieties either MT or the Hodge conjecture holds.
Resumo:
Acceptor-doped ceria has been recognized as a promising intermediate temperature solid oxide fuel cell electrode/electrolyte material. For practical implementation of ceria as a fuel cell electrolyte and for designing model experiments for electrochemical activity, it is necessary to fabricate thin films of ceria. Here, metal-organic chemical vapor deposition was carried out in a homemade reactor to grow ceria films for further electrical, electrochemical, and optical characterization. Doped/undoped ceria films are grown on single crystalline oxide wafers with/without Pt line pattern or Pt solid layer. Deposition conditions were varied to see the effect on the resultant film property. Recently, proton conduction in nanograined polycrystalline pellets of ceria drew much interest. Thickness-mode (through-plane, z-direction) electrical measurements were made to confirm the existence of proton conductivity and investigate the nature of the conduction pathway: exposed grain surfaces and parallel grain boundaries. Columnar structure presumably favors proton conduction, and we have found measurable proton conductivity enhancement. Electrochemical property of gas-columnar ceria interface on the hydrogen electrooxidation is studied by AC impedance spectroscopy. Isothermal gas composition dependence of the electrode resistance was studied to elucidate Sm doping level effect and microstructure effect. Significantly, preferred orientation is shown to affect the gas dependence and performance of the fuel cell anode. A hypothesis is proposed to explain the origin of this behavior. Lastly, an optical transmittance based methodology was developed to obtain reference refractive index and microstructural parameters (thickness, roughness, porosity) of ceria films via subsequent fitting procedure.
Resumo:
Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.
In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.
We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.
We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.
In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.
Finally, we discuss prospects for related future investigations.
Resumo:
This thesis introduces fundamental equations and numerical methods for manipulating surfaces in three dimensions via conformal transformations. Conformal transformations are valuable in applications because they naturally preserve the integrity of geometric data. To date, however, there has been no clearly stated and consistent theory of conformal transformations that can be used to develop general-purpose geometry processing algorithms: previous methods for computing conformal maps have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In contrast, our formulation can be used to produce---for the first time---general surface deformations that are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title Conformal Geometry Processing.
The main contribution of this thesis is analysis and discretization of a certain time-independent Dirac equation, which plays a central role in our theory. Given an immersed surface, we wish to construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution of this equation determines the geometry of the new surface. We derive the precise conditions under which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac equation on triangulated surfaces.
From a practical perspective, this theory has a variety of benefits: conformal maps are desirable in geometry processing because they do not exhibit shear, and therefore preserve textures as well as the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications. We also present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.
Resumo:
The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.
Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.
Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.
Resumo:
The microwave scattering properties of an axially magnetized afterglow plasma column in an S-band waveguide have been investigated experimentally. The column axis is perpendicular to the electric field and the direction of wave propagation in the H_(10)-mode waveguide. Strong absorption is found in the range of upper hybrid frequencies, ω_c ≤ ω ≤ [ω^2_c + ω^2_p(r,t)]^(1/2) where ω_c is the electron cyclotron frequency and ω_p is the locally and temporally varying electron plasma frequency. With the high absorption the noise emission approaches the blackbody limit. A microwave radiometer has been used to measure the noise power and with a comparison and null-technique the electron temperature. As emission and absorption are largely confined to a resonant layer, spatially resolved temperature data are obtained. Time resolution is obtained by gating the radiometer. The peak electron density is derived from the emission or absorption onset at the maximum upper hybrid frequency and confirmed by independent measurements. With this diagnostic technique the electron density and temperature decay has been studied under a variety of experimental conditions. Ambipolar diffusion and collisional cooling essentially account for the plasma decay, but impurities and metastable ions play an important role. The diagnostic method is successfully applied in a microwave heating experiment. The existence of absorbing resonant layers is shown by a peak in the radial temperature profile where the local upper hybrid frequency equals the heating frequency. The knowledge of the plasma parameters is important in the study of hot plasma effects. Buchsbaum-Hasegawa modes are investigated in a wide range of magnetic fields (.5 < ω_c/ω < .985).
Resumo:
I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds
occurring in the late fall and early winter in the Los Angeles
Basin and attributed in the past to the influences of the desert
regions to the north revealed that these currents were of a
foehn nature. Their properties were found to be entirely due
to dynamical heating produced in the descent from the high level
areas in the interior to the lower Los Angeles Basin. Any dust
associated with the phenomenon was found to be acquired from the
Los Angeles area rather than transported from the desert. It was
found that the frequency of occurrence of a mild type foehn of this
nature during this season was sufficient to warrant its classification
as a winter monsoon. This results from the topography of
the Los Angeles region which allows an easy entrance to the air
from the interior by virtue of the low level mountain passes north
of the area. This monsoon provides the mild winter climate of
southern California since temperatures associated with the foehn
currents are far higher than those experienced when maritime air
from the adjacent Pacific Ocean occupies the region.
II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level
regions of the Great Basin and Columbia Plateau which lie between
the Sierra Nevada and Cascade Mountains to the west and the Rocky
Mountains to the east. The outflow from these anticyclones produce
extensive foehns east of the Rockies in the comparatively low
level areas of the middle west and the Canadian provinces of
Alberta and Saskatchewan. Normally at this season of the year very
cold polar continental air masses are present over this territory
and with the occurrence of these foehns marked discontinuity surfaces
arise between the warm foehn current, which is obliged to slide over
a colder mass, and the Pc air to the east. Cyclones are
easily produced from this phenomenon and take the form of unstable
waves which propagate along the discontinuity surface between the
two dissimilar masses. A continual series of such cyclones was
found to occur as long as the Great Basin anticyclone is maintained
with undiminished intensity.
III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and
propagation of young disturbances in the eastern United States
during the spring of the year under the influence of the conditionally
unstable tropical maritime air masses which characterise the
region. It also furnishes an excellent example of the superiority
of air mass and frontal methods of weather prediction for aircraft
operation over the older methods based upon pressure distribution.
IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions
occurring between air masses of the North Pacific Ocean in connection
with Pacific Coast storms and the value of topographic and
aerological considerations in predicting them. Estimates of rainfall
intensity and duration from analyses of this type may be made and
would prove very valuable in the Los Angeles area in connection with
flood control problems.
Resumo:
The electromagnetic scattering and absorption properties of small (kr~1/2) inhomogeneous magnetoplasma columns are calculated via the full set of Maxwell's equations with tensor dielectric constitutive relation. The cold plasma model with collisional damping is used to describe the column. The equations are solved numerically, subject to boundary conditions appropriate to an infinite parallel strip line and to an incident plane wave. The results are similar for several density profiles and exhibit semiquantitative agreement with measurements in waveguide. The absorption is spatially limited, especially for small collision frequency, to a narrow hybrid resonant layer and is essentially zero when there is no hybrid layer in the column. The reflection is also enhanced when the hybrid layer is present, but the value of the reflection coefficient is strongly modified by the presence of the glass tube. The nature of the solutions and an extensive discussion of the conditions under which the cold collisional model should yield valid results is presented.