2 resultados para NMR single-sided Compartmentalization Cells 2D_NMR Diffusion-Relaxation
Resumo:
The emergence of mass spectrometry-based proteomics has revolutionized the study of proteins and their abundances, functions, interactions, and modifications. However, in a multicellular organism, it is difficult to monitor dynamic changes in protein synthesis in a specific cell type within its native environment. In this thesis, we describe methods that enable the metabolic labeling, purification, and analysis of proteins in specific cell types and during defined periods in live animals. We first engineered a eukaryotic phenylalanyl-tRNA synthetase (PheRS) to selectively recognize the unnatural L-phenylalanine analog p-azido-L-phenylalanine (Azf). Using Caenorhabditis elegans, we expressed the engineered PheRS in a cell type of choice (i.e. body wall muscles, intestinal epithelial cells, neurons, pharyngeal muscles), permitting proteins in those cells -- and only those cells -- to be labeled with azides. Labeled proteins are therefore subject to "click" conjugation to cyclooctyne-functionalized affnity probes, separation from the rest of the protein pool and identification by mass spectrometry. By coupling our methodology with heavy isotopic labeling, we successfully identified proteins -- including proteins with previously unknown expression patterns -- expressed in targeted subsets of cells. While cell types like body wall or pharyngeal muscles can be targeted with a single promoter, many cells cannot; spatiotemporal selectivity typically results from the combinatorial action of multiple regulators. To enhance spatiotemporal selectivity, we next developed a two-component system to drive overlapping -- but not identical -- patterns of expression of engineered PheRS, restricting labeling to cells that express both elements. Specifically, we developed a split-intein-based split-PheRS system for highly efficient PheRS-reconstitution through protein splicing. Together, these tools represent a powerful approach for unbiased discovery of proteins uniquely expressed in a subset of cells at specific developmental stages.
Resumo:
Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.
While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.
Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.
To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.
Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.
Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.
Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.