25 resultados para Linear-polymers
Resumo:
Long linear polymers that are end-functionalized with associative groups were studied as additives to hydrocarbon fluids to mitigate the fire hazard associated with the presence of mist in a crash scenario. These polymers were molecularly designed to overcome both the shear-degradation of long polymer chains in turbulent flows, and the chain collapse induced by the random placement of associative groups along polymer backbones. Architectures of associative groups on the polymer chain ends that were tested included clusters of self-associative carboxyl groups and pairs of hetero-complementary associative units.
Linear polymers with clusters of discrete numbers of carboxyl groups on their chain ends were investigated first: an innovative synthetic strategy was devised to achieve unprecedented backbone lengths and precise control of the number of carboxyl groups on chain ends (N). We found that a very narrow range of N allows the co-existence of sufficient end-association strength and polymer solubility in apolar media. Subsequent steady-flow rheological study on solution behavior of such soluble polymers in apolar media revealed that the end-association of very long chains in apolar media leads to the formation of flower-like micelles interconnected by bridging chains, which trap significant fraction of polymer chains into looped structures with low contribution to mist-control. The efficacy of very long 1,4-polybutadiene chains end-functionalized with clusters of four carboxyl groups as mist-control additives for jet fuel was further tested. In addition to being shear-resistant, the polymer was found capable of providing fire-protection to jet fuel at concentrations as low as 0.3wt%. We also found that this polymer has excellent solubility in jet fuel over a wide range of temperature (-30 to +70°C) and negligible interference with dewatering of jet fuel. It does not cause an adverse increase in viscosity at concentrations where mist-control efficacy exists.
Four pairs of hetero-complementary associative end-groups of varying strengths were subsequently investigated, in the hopes of achieving supramolecular aggregates with both mist-control ability and better utilization of polymer building blocks. Rheological study of solutions of the corresponding complementary associative polymer pairs in apolar media revealed the strength of complementary end-association required to achieve supramolecular aggregates capable of modulating rheological properties of the solution.
Both self-associating and complementary associating polymers have therefore been found to resist shear degradation. The successful strategy of building soluble, end-associative polymers with either self-associative or complementary associative groups will guide the next generation of mist-control technology.
Resumo:
The unique structure and properties of brush polymers have led to increased interest in them within the scientific community. This thesis describes studies on the self-assembly of these brush polymers.
Chapter 2 describes a study on the rapid self-assembly of brush block copolymers into nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet to near infrared. Linear relationships are observed between the peak wavelengths of reflection and polymer molecular weights. This work enables "bottom-up" fabrication of photonic crystals with application-tailored bandgaps, through synthetic control of the polymer molecular weight and the method of self-assembly.
Chapter 3 details the analysis of the self-assembly of symmetrical brush block copolymers in bulk and thin films. Highly ordered lamellae with domain spacing ranging from 20 to 240 nm are obtained by varying molecular weight of the backbone. The relationship between degree of polymerization and the domain spacing is reported, and evidence is provided for how rapidly the brush block copolymers self-assemble and achieve thermodynamic equilibrium.
Chapter 4 describes investigations into where morphology transitions take place as the volume fraction of each block is varied in asymmetrical brush block copolymers. Imaging techniques are used to observe a transition from lamellar to a cylindrical morphology as the volume fraction of one of the blocks exceeds 70%. It is also shown that the asymmetric brush block copolymers can be kinetically trapped into undulating lamellar structures by drop casting the samples.
Chapter 5 explores the capability of macromolecules to interdigitate into densely grafted molecular brush copolymers using stereocomplex formation as a driving force. The stereocomplex formation between complementary linear polymers and brush copolymers is demonstrated, while the stereocomplex formation between complementary brush copolymers is shown to be restricted.
Resumo:
Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.
In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.
In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.
Resumo:
This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.
A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.
In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.
The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.
The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.
Resumo:
The various singularities and instabilities which arise in the modulation theory of dispersive wavetrains are studied. Primary interest is in the theory of nonlinear waves, but a study of associated questions in linear theory provides background information and is of independent interest.
The full modulation theory is developed in general terms. In the first approximation for slow modulations, the modulation equations are solved. In both the linear and nonlinear theories, singularities and regions of multivalued modulations are predicted. Higher order effects are considered to evaluate this first order theory. An improved approximation is presented which gives the true behavior in the singular regions. For the linear case, the end result can be interpreted as the overlap of elementary wavetrains. In the nonlinear case, it is found that a sufficiently strong nonlinearity prevents this overlap. Transition zones with a predictable structure replace the singular regions.
For linear problems, exact solutions are found by Fourier integrals and other superposition techniques. These show the true behavior when breaking modulations are predicted.
A numerical study is made for the anharmonic lattice to assess the nonlinear theory. This confirms the theoretical predictions of nonlinear group velocities, group splitting, and wavetrain instability, as well as higher order effects in the singular regions.
Resumo:
A means of assessing the effectiveness of methods used in the numerical solution of various linear ill-posed problems is outlined. Two methods: Tikhonov' s method of regularization and the quasireversibility method of Lattès and Lions are appraised from this point of view.
In the former method, Tikhonov provides a useful means for incorporating a constraint into numerical algorithms. The analysis suggests that the approach can be generalized to embody constraints other than those employed by Tikhonov. This is effected and the general "T-method" is the result.
A T-method is used on an extended version of the backwards heat equation with spatially variable coefficients. Numerical computations based upon it are performed.
The statistical method developed by Franklin is shown to have an interpretation as a T-method. This interpretation, although somewhat loose, does explain some empirical convergence properties which are difficult to pin down via a purely statistical argument.
Resumo:
The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.
A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.
A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.
Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.
Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.
Resumo:
Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.
The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.
When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.
For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.
Resumo:
We consider the following singularly perturbed linear two-point boundary-value problem:
Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)
By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)
Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.
A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.
Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).
Resumo:
The synthesis of a sterically tailored ligand array (M)_2((C_5H_2-2-Si(CH_3)_3-4-C(CH_3)_3)S_2i(CH_3)_2]("M_2Bp") (M = Li, 16; K, 19) is described. Transmetallation of Li_2Bp with YCl_3(THF)_3 affords exclusively the C_2 symmetric product rac-[BpY(µ_2-Cl)_2Li(THF)_2], 20. A X-ray crystal structure of 20 has been determined; triclinic, P1, a= 13.110 (8), b = 17.163 (15), c = 20.623 (14) Å, α = 104.02 (7), β = 99.38 (5), γ = 100.24 (6)° , Z = 4, R = 0.056. Transmetallation of K_2Bp with YCl_3(THF)_3 affords the halide free complex rac-BpYCl, 23. The corresponding rac-BpLaCl, 28, is prepared in an anlogous manner. In all cases the achiral meso isomer is not obtained since only for the racemic isomers are the unfavorable steric interactions between the Si(CH3)_3 groups in the narrow portion of the [Cp-M'-Cp] wedge avoided. Alkylation of 20 or 23 with LiCH(Si(CH_3)_3)_2 affords rac-BpYCH(Si(CH_3)_3)_2, 26 in good yield. Alkylation of 28 with LiCH(Si(CH_3)_3)_2 affords rac-BpLaCH(Si(CH_3)_3)_2 29. Hydrogenation of 26 cleanly affords the bridging hydride species [BpY(µ_2-H)]_2, 27, as the homochiral (R,R) and (S,S) dimeric pairs. 26 is an efficient initiator for the polymerization of ethylene to high molecular weight linear polyethylene. 27 catalyzes the polymerization of propylene (25% v/v in methylcyclohexane) and neat samples of 1-butene, 1-pentene, 1-hexene to moderately high molecular weight polymers: polypropylene (M_n = 4,200, PDI 2.32, T_m 157 °C); poly-1-butene (M_n = 8,500, PDI 3.44, T_m 105 °C); poly-1-pentene (M_n = 20,000, PDI 1.99, T_m 73 °C); poly-1-hexene (M_n = 24,000, PDI 1.75, T_m < 25 °C). ^(13)C NMR spectra at the pentad analysis level indicates that the degree of isotacticity is 99% mmmm for all polymer samples. 27 is the first single component iso-specific α-olefin polymerization catalyst. The presumed origins of the high isospecificity are presented.
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.
Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.
Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.
The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.
In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.
Resumo:
Chapter 1
Cyclobutanediyl has been studied in both its singlet and triplet states by ab initio electronic structure theory. The triplet, which is the ground state of the molecule, exists in both C_(2h) and C_(2v) forms, which interconvert via a C_s transition state. For the singlet, only a C_(2h) form is found. It passes, via a C_s transition state, onto the C_(2v) surface on which bicyclobutane is the only minimum. The ring-flipping (inversion) process in bicyclobutane includes the singlet biradical as an intermediate, and involves a novel, nonleast motion pathway. Semiclassical periodic orbit theory indicates that the various minima on both the singlet and triplet surfaces can interconvert via quantum mechanical tunneling.
Chapter 2
The dimethylenepolycyclobutadienes (n) are the non-Kekulé analogues of the classical acenes. Application of a variety of theoretical methods reveals several novel features of such structures. Most interesting is the emergence of a parity rule. When n is even, n is predicted to be a singlet, with n disjoint NBMOs. When n is odd, theory predicts a triplet ground state with (n+1) NBMOs that are not fully disjoint.
Chapter 3
Bi(cyclobutadienyl) (2), the cyclobutadiene analogue of biphenyl, and its homologues tri- (3) and tetra(cyclobutadienyl) (4) have been studied using electronic structure theory. Ab initio calculations on 2 reveal that the central bond is a true double bond, and that the structure is best thought of as two allyl radicals plus an ethylene. The singlet and triplet states are essentially degenerate. Trimer 3 is two allyls plus a dimethylenecyclobutanediyl, while 4 is two coplanar bi(cyclobutadienyl) units connected by a single bond. For both 3 and 4, the quintet, triplet, and singlet states are essentially degenerate, indicating that they are tetraradicals. The infinite polymer, polycyclobutadiene, has been studied by HMO, EHCO, and VEH methods. Several geometries based on the structures of 3 and 4 have been studied, and the band structures are quite intriguing. A novel crossing between the valence and conduction bands produces a small band gap and a high density of states at the Fermi level.
Chapter 4
At the level of Hückel theory, polyfulvene has a HOCO-LUCO degeneracy much like that seen in polyacetylene. Higher levels of theory remove the degeneracy, but the band gap (E_g) is predicted to be significantly smaller than analogous structures such as polythiophene and polypyrrole at the fulvenoid geometry. An alternative geometry, which we have termed quinoid, is also conceivable for polyfulvene, and it is predicted to have a much larger E_g. The effects of benzannelation to produce analogues of polyisothianaphthene have been evaluated. We propose a new model for such structures based on conventional orbital mixing arguments. Several of the proposed structures have quite interesting properties, which suggest that they are excellent candidates for conducting polymers.
Chapter 5
Theoretical studies of polydimethylenecyclobutene and polydiisopropylidene- cyclobutene reveal that, because of steric crowding, they cannot achieve a planar, fully conjugated structure in either their undoped or doped states. Rather, the structure consists of essentially orthogonal hexatriene units. Such a structure is incompatible with conventional conduction mechanisms involving polarons and bipolarons.
Resumo:
The solution behavior of linear polymer chains is well understood, having been the subject of intense study throughout the previous century. As plastics have become ubiquitous in everyday life, polymer science has grown into a major field of study. The conformation of a polymer in solution depends on the molecular architecture and its interactions with the surroundings. Developments in synthetic techniques have led to the creation of precision-tailored polymeric materials with varied topologies and functionalities. In order to design materials with the desired properties, it is imperative to understand the relationships between polymer architecture and their conformation and behavior. To meet that need, this thesis investigates the conformation and self-assembly of three architecturally complex macromolecular systems with rich and varied behaviors driven by the resolution of intramolecular conflicts. First we describe the development of a robust and facile synthetic approach to reproducible bottlebrush polymers (Chapter 2). The method was used to produce homologous series of bottlebrush polymers with polynorbornene backbones, which revealed the effect of side-chain and backbone length on the overall conformation in both good and theta solvent conditions (Chapter 3). The side-chain conformation was obtained from a series of SANS experiments and determined to be indistinguishable from the behavior of free linear polymer chains. Using deuterium-labeled bottlebrushes, we were able for the first time to directly observe the backbone conformation of a bottlebrush polymer which showed self-avoiding walk behavior. Secondly, a series of SANS experiments was conducted on a homologous series of Side Group Liquid Crystalline Polymers (SGLCPs) in a perdeuterated small molecule liquid crystal (5CB). Monodomain, aligned, dilute samples of SGLCP-b-PS block copolymers were seen to self-assemble into complex micellar structures with mutually orthogonally oriented anisotropies at different length scales (Chapter 4). Finally, we present the results from the first scattering experiments on a set of fuel-soluble, associating telechelic polymers. We observed the formation of supramolecular aggregates in dilute (≤0.5wt%) solutions of telechelic polymers and determined that the choice of solvent has a significant effect on the strength of association and the size of the supramolecules (Chapter 5). A method was developed for the direct estimation of supramolecular aggregation number from SANS data. The insight into structure-property relationships obtained from this work will enable the more targeted development of these molecular architectures for their respective applications.