18 resultados para Chemical screening
Resumo:
β-lactamases are a group of enzymes that confer resistance to penam and cephem antibiotics by hydrolysis of the β-lactam ring, thereby inactivating the antibiotic. Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Asp 132, a strictly conserved residue among the class A β-lactamases, appears to be involved in substrate binding, catalysis, or both. To study the contribution of residue 132 to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at position 132. Phenotypic screening of all mutants indicated that position 132 is very sensitive to amino acid changes, with only N132C, N132D, N132E, and N132Q showing any appreciable activity. Kinetic analysis of three of these mutants showed increases in K_M, along with substantial decreases in k_(cat). Efforts to trap a stable acyl-enzyme intermediate were unsuccessfuL These results indicate that residue 132 is involved in substrate binding, as well as catalysis, and supports the involvement of this residue in acylation as suggested by Strynadka et al.
Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Lys 73 and Glu 166, two strictly conserved residues among the class A β-lactamases, appear to be involved in substrate binding, catalysis, or both. To study the contribution of these residues to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at positions 73 and 166. Then all 400 possible combinations of mutants were created by combinatorial mutagenesis. The colonies harboring the mutants were screened for growth in the presence of ampicillin. The competent colonys' DNA were sequenced, and kinetic parameters investigated. It was found that lysine is essential at position 73, and that position 166 only tolerated fairly conservative changes (Aspartic acid, Histidine, and Tyrosine). These functional mutants exhibited decreased kcat's, but K_M was close to wild-type levels. The results of the combinatorial mutagenesis experiments indicate that Lysis absolutely required for activity at position 73; no mutation at residue 166 can compensate for loss of the long side chain amine. The active mutants found--K73K/E166D, K73KIE166H, and K73KIE166Y were studied by kinetic analysis. These results reaffirmed the function of residue 166 as important in catalysis, specifically deacylation.
The identity of the residue responsible for enhancing the active site serine (Ser 70) in RTEM-1 β-lactamase has been disputed for some time. Recently, analysis of a crystal structure of RTEM-1 β-lactamase with covalently bound intermediate was published, and it was suggested that Lys 73, a strictly conserved residue among the class A β-lactamases, was acting as a general base, activating Ser 70. For this to be possible, the pK_a of Lys 73 would have to be depressed significantly. In an attempt to assay the pK_a of Lys 73, the mutation K73C was made. This mutant protein can be reacted with 2-bromoethylamine, and activity is restored to near wild type levels. ^(15)N-2-bromoethylamine hydrobromide and ^(13)C-2-bromoethylamine hydrobromide were synthesized. Reacting these compounds with the K73C mutant gives stable isotopic enrichment at residue 73 in the form of aminoethylcysteine, a lysine homologue. The pK_a of an amine can be determined by NMR titration, following the change in chemical shift of either the ^(15)N-amine nuclei or adjacent Be nuclei as pH is changed. Unfortunately, low protein solubility, along with probable label scrambling in the Be experiment, did not permit direct observation of either the ^(15)N or ^(13)C signals. Indirect detection experiments were used to observe the protons bonded directly to the ^(13)C atoms. Two NMR signals were seen, and their chemical shift change with pH variation was noted. The peak which was determined to correspond to the aminoethylcysteine residue shifted from 3.2 ppm down to 2.8 ppm over a pH range of 6.6 to 12.5. The pK_a of the amine at position 73 was determined to be ~10. This indicates that residue 73 does not function as a general base in the acylation step of the reaction. However the experimental measurement takes place in the absence of substrate. Since the enzyme undergoes conformational changes upon substrate binding, the measured pK_a of the free enzyme may not correspond to the pK_a of the enzyme substrate complex.
Resumo:
Secondary-ion mass spectrometry (SIMS), electron probe analysis (EPMA), analytical scanning electron microscopy (SEM) and infrared (IR) spectroscopy were used to determine the chemical composition and the mineralogy of sub-micrometer inclusions in cubic diamonds and in overgrowths (coats) on octahedral diamonds from Zaire, Botswana, and some unknown localities.
The inclusions are sub-micrometer in size. The typical diameter encountered during transmission electron microscope (TEM) examination was 0.1-0.5 µm. The micro-inclusions are sub-rounded and their shape is crystallographically controlled by the diamond. Normally they are not associated with cracks or dislocations and appear to be well isolated within the diamond matrix. The number density of inclusions is highly variable on any scale and may reach 10^(11) inclusions/cm^3 in the most densely populated zones. The total concentration of metal oxides in the diamonds varies between 20 and 1270 ppm (by weight).
SIMS analysis yields the average composition of about 100 inclusions contained in the sputtered volume. Comparison of analyses of different volumes of an individual diamond show roughly uniform composition (typically ±10% relative). The variation among the average compositions of different diamonds is somewhat greater (typically ±30%). Nevertheless, all diamonds exhibit similar characteristics, being rich in water, carbonate, SiO_2, and K_2O, and depleted in MgO. The composition of micro-inclusions in most diamonds vary within the following ranges: SiO_2, 30-53%; K_2O, 12-30%; CaO, 8-19%; FeO, 6-11%; Al_2O_3, 3-6%; MgO, 2-6%; TiO_2, 2-4%; Na_2O, 1-5%; P_2O_5, 1-4%; and Cl, 1-3%. In addition, BaO, 1-4%; SrO, 0.7-1.5%; La_2O_3, 0.1-0.3%; Ce_2O_3, 0.3-0.5%; smaller amounts of other rare-earth elements (REE), as well as Mn, Th, and U were also detected by instrumental neutron activation analysis (INAA). Mg/(Fe+Mg), 0.40-0.62 is low compared with other mantle derived phases; K/ AI ratios of 2-7 are very high, and the chondrite-normalized Ce/Eu ratios of 10-21 are also high, indicating extremely fractionated REE patterns.
SEM analyses indicate that individual inclusions within a single diamond are roughly of similar composition. The average composition of individual inclusions as measured with the SEM is similar to that measured by SIMS. Compositional variations revealed by the SEM are larger than those detected by SIMS and indicate a small variability in the composition of individual inclusions. No compositions of individual inclusions were determined that might correspond to mono-mineralic inclusions.
IR spectra of inclusion- bearing zones exhibit characteristic absorption due to: (1) pure diamonds, (2) nitrogen and hydrogen in the diamond matrix; and (3) mineral phases in the micro-inclusions. Nitrogen concentrations of 500-1100 ppm, typical of the micro-inclusion-bearing zones, are higher than the average nitrogen content of diamonds. Only type IaA centers were detected by IR. A yellow coloration may indicate small concentration of type IB centers.
The absorption due to the micro-inclusions in all diamonds produces similar spectra and indicates the presence of hydrated sheet silicates (most likely, Fe-rich clay minerals), carbonates (most likely calcite), and apatite. Small quantities of molecular CO_2 are also present in most diamonds. Water is probably associated with the silicates but the possibility of its presence as a fluid phase cannot be excluded. Characteristic lines of olivine, pyroxene and garnet were not detected and these phases cannot be significant components of the inclusions. Preliminary quantification of the IR data suggests that water and carbonate account for, on average, 20-40 wt% of the micro-inclusions.
The composition and mineralogy of the micro-inclusions are completely different from those of the more common, larger inclusions of the peridotitic or eclogitic assemblages. Their bulk composition resembles that of potassic magmas, such as kimberlites and lamproites, but is enriched in H_2O, CO_3, K_2O, and incompatible elements, and depleted in MgO.
It is suggested that the composition of the micro-inclusions represents a volatile-rich fluid or a melt trapped by the diamond during its growth. The high content of K, Na, P, and incompatible elements suggests that the trapped material found in the micro-inclusions may represent an effective metasomatizing agent. It may also be possible that fluids of similar composition are responsible for the extreme enrichment of incompatible elements documented in garnet and pyroxene inclusions in diamonds.
The origin of the fluid trapped in the micro-inclusions is still uncertain. It may have been formed by incipient melting of a highly metasomatized mantle rocks. More likely, it is the result of fractional crystallization of a potassic parental magma at depth. In either case, the micro-inclusions document the presence of highly potassic fluids or melts at depths corresponding to the diamond stability field in the upper mantle. The phases presently identified in the inclusions are believed to be the result of closed system reactions at lower pressures.
Resumo:
This dissertation describes studies of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) using unnatural amino acid mutagenesis to gain high precision insights into the function of these important membrane proteins.
Chapter 2 considers the functional role of highly conserved proline residues within the transmembrane helices of the D2 dopamine GPCR. Through mutagenesis employing unnatural α-hydroxy acids, proline analogs, and N-methyl amino acids, we find that lack of backbone hydrogen bond donor ability is important to proline function. At one proline site we additionally find that a substituent on the proline backbone N is important to receptor function.
In Chapter 3, side chain conformation is probed by mutagenesis of GPCRs and the muscle-type nAChR. Specific side chain rearrangements of highly conserved residues have been proposed to accompany activation of these receptors. These rearrangements were probed using conformationally-biased β-substituted analogs of Trp and Phe and unnatural stereoisomers of Thr and Ile. We also modeled the conformational bias of the unnatural Trp and Phe analogs employed.
Chapters 4 and 5 examine details of ligand binding to nAChRs. Chapter 4 describes a study investigating the importance of hydrogen bonds between ligands and the complementary face of muscle-type and α4β4 nAChRs. A hydrogen bond involving the agonist appears to be important for ligand binding in the muscle-type receptor but not the α4β4 receptor.
Chapter 5 describes a study characterizing the binding of varenicline, an actively prescribed smoking cessation therapeutic, to the α7 nAChR. Additionally, binding interactions to the complementary face of the α7 binding site were examined for a small panel of agonists. We identified side chains important for binding large agonists such as varenicline, but dispensable for binding the small agonist ACh.
Chapter 6 describes efforts to image nAChRs site-specifically modified with a fluorophore by unnatural amino acid mutagenesis. While progress was hampered by high levels of fluorescent background, improvements to sample preparation and alternative strategies for fluorophore incorporation are described.
Chapter 7 describes efforts toward a fluorescence assay for G protein association with a GPCR, with the ultimate goal of probing key protein-protein interactions along the G protein/receptor interface. A wide range of fluorescent protein fusions were generated, expressed in Xenopus oocytes, and evaluated for their ability to associate with each other.
Resumo:
Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.
Resumo:
This thesis describes studies surrounding a ligand-gated ion channel (LGIC): the serotonin type 3A receptor (5-HT3AR). Structure-function experiments using unnatural amino acid mutagenesis are described, as well as experiments on the methodology of unnatural amino acid mutagenesis. Chapter 1 introduces LGICs, experimental methods, and an overview of the unnatural amino acid mutagenesis.
In Chapter 2, the binding orientation of the clinically available drugs ondansetron and granisetron within 5-HT3A is determined through a combination of unnatural amino acid mutagenesis and an inhibition based assay. A cation-π interaction is found for both ondansetron and granisetron with a specific tryptophan residue (Trp183, TrpB) of the mouse 5-HT3AR, which establishes a binding orientation for these drugs.
In Chapter 3, further studies were performed with ondansetron and granisetron with 5-HT3A. The primary determinant of binding for these drugs was determined to not include interactions with a specific tyrosine residue (Tyr234, TyrC2). In completing these studies, evidence supporting a cation-π interaction of a synthetic agonist, meta-chlorophenylbiguanide, was found with TyrC2.
In Chapter 4, a direct chemical acylation strategy was implemented to prepare full-length suppressor tRNA mediated by lanthanum(III) and amino acid phosphate esters. The derived aminoacyl-tRNA is shown to be translationally competent in Xenopus oocytes.
Appendix A.1 gives details of a pharmacological method for determining the equilibrium dissociation constant, KB, of a competitive antagonist with a receptor, known as Schild analysis. Appendix A.2 describes an examination of the inhibitory activity of new chemical analogs of the 5-HT3A antagonist ondansetron. Appendix A.3 reports an organic synthesis of an intermediate for a new unnatural amino acid. Appendix A.4 covers an additional methodological examination for the preparation of amino-acyl tRNA.
Resumo:
This thesis describes the expansion and improvement of the iterative in situ click chemistry OBOC peptide library screening technology. Previous work provided a proof-of-concept demonstration that this technique was advantageous for the production of protein-catalyzed capture (PCC) agents that could be used as drop-in replacements for antibodies in a variety of applications. Chapter 2 describes the technology development that was undertaken to optimize this screening process and make it readily available for a wide variety of targets. This optimization is what has allowed for the explosive growth of the PCC agent project over the past few years.
These technology improvements were applied to the discovery of PCC agents specific for single amino acid point mutations in proteins, which have many applications in cancer detection and treatment. Chapter 3 describes the use of a general all-chemical epitope-targeting strategy that can focus PCC agent development directly to a site of interest on a protein surface. This technique utilizes a chemically-synthesized chunk of the protein, called an epitope, substituted with a click handle in combination with the OBOC in situ click chemistry libraries in order to focus ligand development at a site of interest. Specifically, Chapter 3 discusses the use of this technique in developing a PCC agent specific for the E17K mutation of Akt1. Chapter 4 details the expansion of this ligand into a mutation-specific inhibitor, with applications in therapeutics.
Resumo:
The combustion of CS₂ and O₂ in a free burning laminar mixing layer at low pressure was investigated using emission spectroscopy. The temperature fields, CO vibrational distributions, and CO concentrations were measured. The data indicate that vibration ally excited CO was produced in the mixing layer flames, but that there were no vibrational population inversions. In comparison with the CS₂/O₂ premixed flames, the mixing layer flames favored greater production of COS and CO₂. Computer modeling was used to study the mechanisms responsible for the production of COS and CO₂, and to study how the branching chain mechanism responsible for production of CO affects the behavior of the mixing layer flame. The influences of the gas additives, N₂O, COS, and CNBr, were also investigated.
Resumo:
Part one of this thesis consists of two sections. In the first section the fluorine chemical shift of a single crystal CaF_2 has been measured as a function of external pressure up to 4 kilobar at room temperature using multiple pulse NMR techniques. The pressure dependence of the shift is found to be -1.7 ± 1 ppm/kbar, while a theoretical calculation using an overlap model predicts a shift of -0.46 ppm/kbar. In the second section a separation of the chemical shift tensor into physically meaningful "geometrical" and "chemical" contributions is presented and a comparison of the proposed model calculations with recently reported data on hydroxyl proton chemical shift tensors demonstrates, that for this system, the geometrical portion accounts for the qualitative features of the measured tensors.
Part two of the thesis consists of a study of fluoride ion motion in β-PbF_2 doped with NaF by measurement of the ^(19)F transverse relaxation time (T_2), spin lattice relaxation time (T_1) and the spin lattice relaxation time in the rotating frame (T_(1r)). Measurements over the temperature range of -50°C to 160°C lead to activation energies for T_1, T_(1r) and T_2 of 0.205 ± 0.01, 0.29 + 0.02 and 0.27 ± 0.01 ev/ion, and a T_(1r) minimum at 56°C yields a correlation time of 0.74 μsec. Pressure dependence of T_1 and T_2 yields activation volumes of <0.2 cm^3/g-mole and 1.76 ± 0.05 cm^3/g-mole respectively. These data along with the measured magnetic field independence of T_1 suggest that the measured T_1's are not caused by ^(19)F motion, but by thermally excited carriers.
Part three of the thesis consists of a study of two samples of Th_4H_(15), prepared under different conditions but both having the proper ratio of H/Th (to within 1%). The structure of the Th_4H_(15) as suggested by X-ray measurements is confirmed through a moment analysis of the rigid lattice line shape. T_1 and T_2 measurements above 390 K furnish activation energies of 16.3 ± 1.2 kcal/mole and 18.0 ± 3.0 kcal/mole, respectively. Below 350 K, T_(1r) measurements furnish an activation energy of 10.9 ± 0.7 kcal/mole, indicating most probably more than a single mechanism for proton motion. A time-temperature hysteresis effect of the proton motion was found in one of the two samples and is strongly indicative of a phase change. T_1 at room temperature and below is dominated by relaxation due to conduction electrons with the product T_1T being 180 ± 10 K-sec. Using multiple pulse techniques to greatly reduce homonuclear dipolar broadening, a temperature-dependent line shift was observed, and the chemical shift anisotropy is estimated to be less than 16 ppm.
Resumo:
Viruses possess very specific methods of targeting and entering cells. These methods would be extremely useful if they could also be applied to drug delivery, but little is known about the molecular mechanisms of the viral entry process. In order to gain further insight into mechanisms of viral entry, chemical and spectroscopic studies in two systems were conducted, examining hydrophobic protein-lipid interactions during Sendai virus membrane fusion, and the kinetics of bacteriophage λ DNA injection.
Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator3-(trifluoromethyl)-3-(m-^(125 )I] iodophenyl)diazirine (TID). The probe was incorporated in target membranes prior to virus addition and photolysis. During Sendai virus fusion with liposomes composed of cardiolipin (CL) or phosphatidylserine (PS), the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F_1 subunit with the target membrane is an initiating event in fusion. Correlation of the hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. Separation of proteins after labeling shows that the F_1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and that the F_2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions, after titration of acidic amino acids. HN labeling under nonfusogenic conditions reveals that viral binding may involve hydrophobic as well as electrostatic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions.
Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes, and that HN binding may involve hydrophobic interactions as well. Labeling of the erythrocyte membranes revealed close membrane association of spectrin, which may play a role in regulating membrane fusion. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion. Correlation of these results with earlier studies of membrane hydration and fusion kinetics provides a more detailed view of the mechanism of fusion.
The kinetics of DNA injection by bacteriophage λ. into liposomes bearing reconstituted receptors were measured using fluorescence spectroscopy. LamB, the bacteriophage receptor, was extracted from bacteria and reconstituted into liposomes by detergent removal dialysis. The DNA binding fluorophore ethidium bromide was encapsulated in the liposomes during dialysis. Enhanced fluorescence of ethidium bromide upon binding to injected DNA was monitored, and showed that injection is a rapid, one-step process. The bimolecular rate law, determined by the method of initial rates, revealed that injection occurs several times faster than indicated by earlier studies employing indirect assays.
It is hoped that these studies will increase the understanding of the mechanisms of virus entry into cells, and to facilitate the development of virus-mimetic drug delivery strategies.
Resumo:
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly.
We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments.
We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion.
We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.
Resumo:
Wide field-of-view (FOV) microscopy is of high importance to biological research and clinical diagnosis where a high-throughput screening of samples is needed. This thesis presents the development of several novel wide FOV imaging technologies and demonstrates their capabilities in longitudinal imaging of living organisms, on the scale of viral plaques to live cells and tissues.
The ePetri Dish is a wide FOV on-chip bright-field microscope. Here we applied an ePetri platform for plaque analysis of murine norovirus 1 (MNV-1). The ePetri offers the ability to dynamically track plaques at the individual cell death event level over a wide FOV of 6 mm × 4 mm at 30 min intervals. A density-based clustering algorithm is used to analyze the spatial-temporal distribution of cell death events to identify plaques at their earliest stages. We also demonstrate the capabilities of the ePetri in viral titer count and dynamically monitoring plaque formation, growth, and the influence of antiviral drugs.
We developed another wide FOV imaging technique, the Talbot microscope, for the fluorescence imaging of live cells. The Talbot microscope takes advantage of the Talbot effect and can generate a focal spot array to scan the fluorescence samples directly on-chip. It has a resolution of 1.2 μm and a FOV of ~13 mm2. We further upgraded the Talbot microscope for the long-term time-lapse fluorescence imaging of live cell cultures, and analyzed the cells’ dynamic response to an anticancer drug.
We present two wide FOV endoscopes for tissue imaging, named the AnCam and the PanCam. The AnCam is based on the contact image sensor (CIS) technology, and can scan the whole anal canal within 10 seconds with a resolution of 89 μm, a maximum FOV of 100 mm × 120 mm, and a depth-of-field (DOF) of 0.65 mm. We also demonstrate the performance of the AnCam in whole anal canal imaging in both animal models and real patients. In addition to this, the PanCam is based on a smartphone platform integrated with a panoramic annular lens (PAL), and can capture a FOV of 18 mm × 120 mm in a single shot with a resolution of 100─140 μm. In this work we demonstrate the PanCam’s performance in imaging a stained tissue sample.
Resumo:
The high computational cost of correlated wavefunction theory (WFT) calculations has motivated the development of numerous methods to partition the description of large chemical systems into smaller subsystem calculations. For example, WFT-in-DFT embedding methods facilitate the partitioning of a system into two subsystems: a subsystem A that is treated using an accurate WFT method, and a subsystem B that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT) method. Representation of the interactions between subsystems is non-trivial, and often requires the use of approximate kinetic energy functionals or computationally challenging optimized effective potential calculations; however, it has recently been shown that these challenges can be eliminated through the use of a projection operator. This dissertation describes the development and application of embedding methods that enable accurate and efficient calculation of the properties of large chemical systems.
Chapter 1 introduces a method for efficiently performing projection-based WFT-in-DFT embedding calculations on large systems. This is accomplished by using a truncated basis set representation of the subsystem A wavefunction. We show that naive truncation of the basis set associated with subsystem A can lead to large numerical artifacts, and present an approach for systematically controlling these artifacts.
Chapter 2 describes the application of the projection-based embedding method to investigate the oxidative stability of lithium-ion batteries. We study the oxidation potentials of mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC) by using the projection-based embedding method to calculate the vertical ionization energy (IE) of individual molecules at the CCSD(T) level of theory, while explicitly accounting for the solvent using DFT. Interestingly, we reveal that large contributions to the solvation properties of DMC originate from quadrupolar interactions, resulting in a much larger solvent reorganization energy than that predicted using simple dielectric continuum models. Demonstration that the solvation properties of EC and DMC are governed by fundamentally different intermolecular interactions provides insight into key aspects of lithium-ion batteries, with relevance to electrolyte decomposition processes, solid-electrolyte interphase formation, and the local solvation environment of lithium cations.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
Resumo:
This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.