2 resultados para wheeled mobile robot

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o avanço no desenvolvimento e utilização de veículos e robôs autoequilibrantes, faz-se necessário a investigação de controladores capazes de atender os diversos desafios relacionados à utilização desses sistemas. Neste trabalho foi estudado o controle de equilíbrio e posição de um robô auto-equilibrante de duas rodas. O interesse particular nesta aplicação vem da sua estrutura e da riqueza de sua dinâmica física. Por ser um problema complexo e não trivial há grande interesse em avaliar os controladores inteligentes. A primeira parte da dissertação aborda o desenvolvimento de um controle clássico do tipo PID, para em seguida ser comparado com a implementação de dois tipos de controladores inteligentes: On-line Neuro Fuzzy Control (ONFC) e Proportional-Integral-Derivative Neural-Network (PIDNN). Também é apresentada a implementação dos controladores em uma plataforma de hardware, utilizando o kit LEGO Mindstorm, e numa plataforma de simulação utilizando o MATLAB-Simulink. Em seguida, dois estudos de casos são desenvolvidos visando comparar o desempenho dos controladores. O primeiro caso avalia o controle de equilíbrio e posição do robô auto-equilibrante de duas rodas sobre um terreno plano tendo como interesse observar o desempenho intrínseco do sistema sob ausência de fatores externos. O segundo caso estuda o controle de equilíbrio e posição do robô em terrenos irregulares visando investigar a resposta do sistema sob influência de condições adversas em seu ambiente. Finalmente, o desempenho de cada um dos controladores desenvolvidos é discutido, verificando-se resultados competitivos no controle do robô auto-equilibrante de duas rodas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diversas das possíveis aplicações da robótica de enxame demandam que cada robô seja capaz de estimar a sua posição. A informação de localização dos robôs é necessária, por exemplo, para que cada elemento do enxame possa se posicionar dentro de uma formatura de robôs pré-definida. Da mesma forma, quando os robôs atuam como sensores móveis, a informação de posição é necessária para que seja possível identificar o local dos eventos medidos. Em virtude do tamanho, custo e energia dos dispositivos, bem como limitações impostas pelo ambiente de operação, a solução mais evidente, i.e. utilizar um Sistema de Posicionamento Global (GPS), torna-se muitas vezes inviável. O método proposto neste trabalho permite que as posições absolutas de um conjunto de nós desconhecidos sejam estimadas, com base nas coordenadas de um conjunto de nós de referência e nas medidas de distância tomadas entre os nós da rede. A solução é obtida por meio de uma estratégia de processamento distribuído, onde cada nó desconhecido estima sua própria posição e ajuda os seus vizinhos a calcular as suas respectivas coordenadas. A solução conta com um novo método denominado Multi-hop Collaborative Min-Max Localization (MCMM), ora proposto com o objetivo de melhorar a qualidade da posição inicial dos nós desconhecidos em caso de falhas durante o reconhecimento dos nós de referência. O refinamento das posições é feito com base nos algoritmos de busca por retrocesso (BSA) e de otimização por enxame de partículas (PSO), cujos desempenhos são comparados. Para compor a função objetivo, é introduzido um novo método para o cálculo do fator de confiança dos nós da rede, o Fator de Confiança pela Área Min-Max (MMA-CF), o qual é comparado com o Fator de Confiança por Saltos às Referências (HTA-CF), previamente existente. Com base no método de localização proposto, foram desenvolvidos quatro algoritmos, os quais são avaliados por meio de simulações realizadas no MATLABr e experimentos conduzidos em enxames de robôs do tipo Kilobot. O desempenho dos algoritmos é avaliado em problemas com diferentes topologias, quantidades de nós e proporção de nós de referência. O desempenho dos algoritmos é também comparado com o de outros algoritmos de localização, tendo apresentado resultados 40% a 51% melhores. Os resultados das simulações e dos experimentos demonstram a eficácia do método proposto.