1 resultado para texture segmentation
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Com a necessidade de extrair as informações contidas nas imagens de satélite de forma rápida, eficiente e econômica, são utilizadas cada vez mais as técnicas computacionais de processamento de imagens como a de segmentação automática. Segmentar uma imagem consiste em dividí-la em regiões através de um critério de similaridade, onde os pixels que estão contidos nestas possuem características semelhantes, como por exemplo, nível de cinza, textura, ou seja, a que melhor represente os objetos presentes na imagem. Existem vários exemplos de algoritmos segmentadores, como o de crescimento de regiões onde os pixels crescem e são aglutinados formando regiões. Para determinar quais os melhores parâmetros utilizados nestes algoritmos segmentadores é necessário que se avalie os resultados a partir dos métodos mais utilizados, que são os supervisionados onde há necessidade de uma imagem de referência, considerada ideal fazendo com que se tenha um conhecimento a priori da região de estudo. Os não supervisionados, onde não há a necessidade de uma imagem de referência, fazendo com que o usuário economize tempo. Devido à dificuldade de se obter avaliadores para diferentes tipos de imagem, é proposta a metodologia que permite avaliar imagens que possuam áreas com vegetação, onde serão formadas grandes regiões (Crianass) e o que avaliará as imagens com áreas urbanas onde será necessário mais detalhamento (Cranassir).