7 resultados para particle transport

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O esquema iterativo de fonte de espalhamento (SI) é tradicionalmente aplicado para a convergência da solução numérica de malha fina para problemas de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas com fonte fixa. O esquema SI é muito simples de se implementar sob o ponto de vista computacional; porém, o esquema SI pode apresentar taxa de convergência muito lenta, principalmente para meios difusivos (baixa absorção) com vários livres caminhos médios de extensão. Nesta dissertação descrevemos uma técnica de aceleração baseada na melhoria da estimativa inicial para a distribuição da fonte de espalhamento no interior do domínio de solução. Em outras palavras, usamos como estimativa inicial para o fluxo escalar médio na grade de discretização de malha fina, presentes nos termos da fonte de espalhamento das equações discretizadas SN usadas nas varreduras de transporte, a solução numérica da equação da difusão de nêutrons em grade espacial de malha grossa com condições de contorno especiais, que aproximam as condições de contorno prescritas que são clássicas em cálculos SN, incluindo condições de contorno do tipo vácuo. Para aplicarmos esta solução gerada pela equação da difusão em grade de discretização de malha grossa nas equações discretizadas SN de transporte na grade de discretização de malha fina, primeiro implementamos uma reconstrução espacial dentro de cada nodo de discretização, e então determinamos o fluxo escalar médio em grade de discretização de malha fina para usá-lo nos termos da fonte de espalhamento. Consideramos um número de experimentos numéricos para ilustrar a eficiência oferecida pela presente técnica (DSA) de aceleração sintética de difusão.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um método numérico nodal livre de erros de truncamento espacial é desenvolvido para problemas adjuntos de transporte de partículas neutras monoenergéticas em geometria unidimensional com fonte fixa na formulação de ordenadas discretas (SN). As incógnitas no método são os fluxos angulares adjuntos médios nos nodos e os fluxos angulares adjuntos nas fronteiras dos nodos, e os valores numéricos gerados para essas quantidades são os obtidos a partir da solução analítica das equações SN adjuntas. O método é fundamentado no uso da convencional equação adjunta SN discretizada de balanço espacial, que é válida para cada nodo de discretização espacial e para cada direção discreta da quadratura angular, e de uma equação auxiliar adjunta não convencional, que contém uma função de Green para os fluxos angulares adjuntos médios nos nodos em termos dos fluxos angulares adjuntos emergentes das fronteiras dos nodos e da fonte adjunta interior. Resultados numéricos são fornecidos para ilustrarem a precisão do método proposto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho, três técnicas para resolver numericamente problemas inversos de transporte de partículas neutras a uma velocidade para aplicações em engenharia nuclear são desenvolvidas. à fato conhecido que problemas diretos estacionários e monoenergéticos de transporte são caracterizados por estimar o fluxo de partículas como uma função-distribuição das variáveis independentes de espaço e de direção de movimento, quando os parâmetros materiais (seções de choque macroscópicas), a geometria, e o fluxo incidente nos contornos do domínio (condições de contorno), bem como a distribuição de fonte interior são conhecidos. Por outro lado, problemas inversos, neste trabalho, buscam estimativas para o fluxo incidente no contorno, ou a fonte interior, ou frações vazio em barras homogêneas. O modelo matemático usado tanto para os problemas diretos como para os problemas inversos é a equação de transporte independente do tempo, a uma velocidade, em geometria unidimensional e com o espalhamento linearmente anisotrópico na formulação de ordenadas discretas (SN). Nos problemas inversos de valor de contorno, dado o fluxo emergente em um extremo da barra, medido por um detector de nêutrons, por exemplo, buscamos uma estimativa precisa para o fluxo incidente no extremo oposto. Por outro lado, nos problemas inversos SN de fonte interior, buscamos uma estimativa precisa para a fonte armazenada no interior do domínio para fins de blindagem, sendo dado o fluxo emergente no contorno da barra. Além disso, nos problemas inversos SN de fração de vazio, dado o fluxo emergente em uma fronteira da barra devido ao fluxo incidente prescrito no extremo oposto, procuramos por uma estimativa precisa da fração de vazio no interior da barra, no contexto de ensaios não-destrutivos para aplicações na indústria. O código computacional desenvolvido neste trabalho apresenta o método espectronodal de malha grossa spectral Greens function (SGF) para os problemas diretos SN em geometria unidimensional para gerar soluções numéricas precisas para os três problemas inversos SN descritos acima. Para os problemas inversos SN de valor de contorno e de fonte interior, usamos a propriedade da proporcionalidade da fuga de partículas; ademais, para os problemas inversos SN de fração de vazio, oferecemos a técnica a qual nos referimos como o método físico da bissecção. Apresentamos resultados numéricos para ilustrar a precisão das três técnicas, conforme descrito nesta tese.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Como eventos de fissão induzida por nêutrons não ocorrem nas regiões nãomultiplicativas de reatores nucleares, e.g., moderador, refletor, e meios estruturais, essas regiões não geram potência e a eficiência computacional dos cálculos globais de reatores nucleares pode portanto ser aumentada eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas em torno do núcleo ativo. à discutida nesta dissertação a eficiência computacional de condições de contorno aproximadas tipo albedo na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. Albedo, palavra de origem latina para alvura, foi originalmente definido como a fração da luz incidente que é refletida difusamente por uma superfície. Esta palavra latina permaneceu como o termo científico usual em astronomia e nesta dissertação este conceito é estendido para reflexão de nêutrons. Este albedo SN nãoconvencional substitui aproximadamente a região refletora em torno do núcleo ativo do reator, pois os termos de fuga transversal são desprezados no interior do refletor. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta dissertação, são exatas. Por eficiência computacional entende-se analisar a precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos para dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um método espectronodal é desenvolvido para problemas de transporte de partículas neutras de fonte fixa, multigrupo de energia em geometria cartesiana na formulação de ordenadas discretas (SN). Para geometria unidimensional o método espectronodal multigrupo denomina-se método spectral Greens function (SGF) com o esquema de inversão nodal (NBI) que converge solução numérica para problemas SN multigrupo em geometria unidimensional, que são completamente livre de erros de truncamento espacial para ordem L de anisotropia de espalhamento desde que L < N. Para geometria X; Y o método espectronodal multigrupo baseia-se em integrações transversais das equações SN no interior dos nodos de discretização espacial, separadamente nas direções coordenadas x e y. Já que os termos de fuga transversal são aproximados por constantes, o método nodal resultante denomina-se SGF-constant nodal (SGF-CN), que é aplicado a problemas SN multigrupo de fonte fixa em geometria X; Y com espalhamento isotrópico. Resultados numéricos são apresentados para ilustrar a eficiência dos códigos SGF e SGF-CN e a precisão das soluções numéricas convergidas em cálculos de malha grossa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

à presentada nesta dissertação uma análise espectral das equações de transporte de nêutrons, independente do tempo, em geometria unidimensional e bidimensional, na formulação de ordenadas discretas (SN), utilizando o modelo de uma velocidade e multigrupo, considerando meios onde ocorrem o fenômeno da fissão nuclear. Esta análise espectral constitui-se na resolução de problemas de autovalores e respectivos autovetores, e reproduz a expressão para a solução geral analítica local das equações SN (para geometria unidimensional) ou das equações nodais integradas transversalmente (geometria retangular bidimensional) dentro de cada região homogeneizada do domínio espacial. Com a solução geral local determinada, métodos numéricos, tais como os métodos de matriz de resposta SN, podem ser derivados. Os resultados numéricos são gerados por programas de computadores implementados em MatLab, versão 2012, a fim de verificar a natureza dos autovalores e autovetores correspondentes no espaço real ou complexo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os eventos de fissão nuclear, resultados da interação dos nêutrons com os núcleos dos átomos do meio hospedeiro multiplicativo, não estão presentes em algumas regiões dos reatores nucleares, e.g., moderador, refletor, e meios estruturais. Nesses domínios espaciais não há geração de potência nuclear térmica e, além disso, comprometem a eficiência computacional dos cálculos globais de reatores nucleares. Propomos nesta tese uma estratégia visando a aumentar a eficiência computacional dessas simulações eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas (baffle e refletor) em torno do núcleo ativo. Apresentamos algumas modelagens e discutimos a eficiência da aplicação dessas condições de contorno aproximadas tipo albedo para uma e duas regiões nãomultiplicativas, na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. A denominação Albedo, palavra de origem latina para alvura, foi originalmente definida como a fração da luz incidente que é refletida difusamente por uma superfície. Esta denominação latina permaneceu como o termo científico usual em astronomia e, nesta tese, este conceito é estendido para reflexão de nêutrons. Estas condições de contorno tipo albedo SN não-convencional substituem aproximadamente as regiões de baffle e refletor no em torno do núcleo ativo do reator, desprezando os termos de fuga transversal no interior dessas regiões. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta tese, são exatas. Por eficiência computacional entende-se a análise da precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos considerando dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.