2 resultados para parallel algorithm
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Este trabalho de pesquisa tem por objetivo apresentar e investigar a viabilidade de um método numérico que contempla o paralelismo no tempo. Este método numérico está associado a problemas de condição inicial e de contorno para equações diferenciais parciais (evolutivas). Diferentemente do método proposto neste trabalho, a maioria dos métodos numéricos associados a equações diferencias parciais evolutivas e tradicionalmente encontrados, contemplam apenas o paralelismo no espaço. Daí, a motivação em realizar o presente trabalho de pesquisa, buscando não somente um método com paralelismo no tempo mas, sobretudo, um método viável do ponto de vista computacional. Para isso, a implementação do esquema numérico proposto está por conta de um algoritmo paralelo escrito na linguagem C e que utiliza a biblioteca MPI. A análise dos resultados obtidos com os testes de desempenho revelam um método numérico escalável e que exige pouco nível de comunicação entre processadores.
Resumo:
A Otimização por Enxame de Partículas (PSO, Particle Swarm Optimization) é uma técnica de otimização que vem sendo utilizada na solução de diversos problemas, em diferentes áreas do conhecimento. Porém, a maioria das implementações é realizada de modo sequencial. O processo de otimização necessita de um grande número de avaliações da função objetivo, principalmente em problemas complexos que envolvam uma grande quantidade de partículas e dimensões. Consequentemente, o algoritmo pode se tornar ineficiente em termos do desempenho obtido, tempo de resposta e até na qualidade do resultado esperado. Para superar tais dificuldades, pode-se utilizar a computação de alto desempenho e paralelizar o algoritmo, de acordo com as características da arquitetura, visando o aumento de desempenho, a minimização do tempo de resposta e melhoria da qualidade do resultado final. Nesta dissertação, o algoritmo PSO é paralelizado utilizando três estratégias que abordarão diferentes granularidades do problema, assim como dividir o trabalho de otimização entre vários subenxames cooperativos. Um dos algoritmos paralelos desenvolvidos, chamado PPSO, é implementado diretamente em hardware, utilizando uma FPGA. Todas as estratégias propostas, PPSO (Parallel PSO), PDPSO (Parallel Dimension PSO) e CPPSO (Cooperative Parallel PSO), são implementadas visando às arquiteturas paralelas baseadas em multiprocessadores, multicomputadores e GPU. Os diferentes testes realizados mostram que, nos problemas com um maior número de partículas e dimensões e utilizando uma estratégia com granularidade mais fina (PDPSO e CPPSO), a GPU obteve os melhores resultados. Enquanto, utilizando uma estratégia com uma granularidade mais grossa (PPSO), a implementação em multicomputador obteve os melhores resultados.