2 resultados para oxidative biology

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As formas epimastigotas de Trypanosoma cruzi proliferam e se diferenciam no interior de diferentes compartimentos do trato digestivo dos triatomíneos. Esses ambientes antagônicos, no que diz respeito à concentração de nutrientes, pH e status redox, constituem um desafio para o protozoário por conterem moléculas e fatores capazes de deflagrar diferentes sinalizações e respostas no parasito. Por isso, testamos a influência de produtos abundantes do metabolismo do vetor e de status redox distintos, frente aos processos de proliferação e diferenciação in vivo e in vitro. Como exemplo temos o heme e a hemozoína, subprodutos da digestão da hemoglobina, e o urato, rico na urina dos insetos. O heme é uma importante molécula em todos os seres vivos. Nosso grupo mostrou seu papel na proliferação in vitro de T. cruzi e que esse sinal é governado pela enzima redox-sensível CaMKII (Lara et al., 2007; Souza et al., 2009). Esse efeito parece depender de uma sinalização redox, onde o heme e não seus análigos induz a formação de EROs, modulando a atividade da CaMKII (Nogueira et al, 2011). Apesar de gerar espécies reativas de oxigênio (EROs) em formas epimastigotas, o heme não alterou a ultraestrutura desses parasitos mostrando uma adaptação a ambientes oxidantes. Além disso, a adição de FCCP inibiu a formação de EROs mitocondrial, diminuindo a proliferação dos parasitos. Em contrapartida, a AA aumentou drasticamente a produção de EROs mitocondrial levando à morte dos epimastigotas. Estes resultados confirmam a hipótese de regulação redox do crescimento de epimastigotas. A formação de β- hematina (hemozoína) constitui uma elegante estratégia para minimizar o efeito tóxico do heme nos insetos hematófagos. Contudo, a β-hematina não influenciou a proliferação ou a metaciclogênese in vitro. Já o urato, e outros antioxidantes clássicos como o GSH e o NAC prejudicaram a proliferação in vitro de epimastigotas. Estes efeitos foram parcialmente revertidos quando os antioxidantes foram incubados juntamente com o heme. Durante a metaciclogênese in vitro, o NAC e o urato induziram um aumento significativo das formas tripomastigotas e levaram a diminuição da porcentagem de formas epimastigotas. Em contrapartida, o heme e a β-hematina apresentaram o efeito oposto, diminuindo a porcentagem de formas tripomastigotas e aumentando a de epimastigotas. No intuito de confirmar a influencia do status redox na biologia do parasito in vivo, nós quantificamos a carga parasitária nas porções anterior e posterior e no reto do triatomíneo alimentado na presença ou na ausência de NAC e urato por qPCR. O tratamento com os antioxidantes aumentou a carga parasitária em todas as partes do intestino analisadas. Posteriormente, para diferenciar as formas evolutivas responsáveis pelo incremento da carga parasitária, foram realizadas contagens diferenciais nas mesmas porções do intestino do inseto vetor. Cinco dias após a infecção foi observado aumento significativo de formas tripomastigotas e diminuição de formas epimastigotas in vivo. Em conjunto, estes dados sugerem que, assim como a concentração de nutrientes e o pH, o status redox também pode influenciar a biologia do T. cruzi no interior do inseto vetor. Neste cenário, moléculas oxidantes agiriam a favor da proliferação, e em contraste, antioxidantes parecem favorecer a metaciclogênese.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudos demostram que a hiperalimentação no período pós-natal causa obesidade, alterações cardiometabólicas e resistência à insulina em longo prazo. O objetivo do estudo foi investigar as consequências da hiperalimentação na lactação nos corações de camundongos filhotes e adultos ao longo do desenvolvimento. Para induzir a hiperalimentação na lactação, o tamanho da ninhada foi reduzida a 3 filhotes machos no terceiro dia, grupo hiperalimentado (GH). O grupo controle (GC) permaneceu com 9 filhotes da lactação ao desmame. Avaliamos a massa corporal, gordura epididimária e retroperitoneal, morfologia hepática e cardíaca, ultraestrutura dos cardiomiócitos, peso do PVE/CT, glicemia de jejum, triglicerídeos, colesterol total, insulina plasmática e HOMA-IR. Analisamos o consumo de oxigênio das fibras cardíacas através da respirometria de alta resolução, atividade enzimática da PDH, CS e LDH no coração e glicogênio hepático. Biologia molecular, através das proteínas: IRβ, IRS1, pIRS1, PTP1B, PI3K, Akt, pAkt, GLUT1, GLUT4, AMPKα, pAMPKα, HKII, CPT1, UCP2, FABPm, CD36, PGC-1α, PPARα, 4HNE, complexos da CTE (I, II, III, IV e V), α-tubulina, GP91 e VADC. Diferenças entre os grupos analisadas por Two-Way ANOVA, com significância p<0,05. O GH apresentou aumento da massa corporal, gordura epididimária, retroperitoneal e colesterol total em todas as idades; glicemia de jejum, insulina, índice de HOMA-IR e triglicerídeos aos 21 e 90 dias. Aumento do índice de Lee aos 60 e 90 dias. GH apresentou diminuição: do IRβ e GLUT4 aos 21 e 60 dias; aumento do IRβ aos 90 dias; aumento do IRS1, PTP1B, aos 21 e 90 dias e da AKT, pAMPK/AMPK e GLUT1 aos 21 dias; diminuição da pIRS1/IRS1, PI3K, pAKT/AKT aos 21 e 90 dias; diminuição da HKII aos 21 dias e aumento aos 60 e 90 dias; aumento da PDH aos 90 dias; aumento da LDH aos 21 dias e redução aos 60 dias; aumento da CS aos 21 dias e diminuição aos 60 e 90 dias; aumento da oxidação de carboidratos aos 21 dias e redução aos 90 dias; diminuição na oxidação de ácidos graxos aos 60 e 90 dias. Adicionalmente, aumento do desacoplamento mitocondrial entre a fosforilação oxidativa e a síntese de ATP aos 60 e 90 dias. Diminuição da CPT1 e aumento da UCP2 aos 21 e 90 dias. Diminuição da PGC-1α aos 60 e 90 dias; da FABPm e CD36 em todas idades. Aumento da 4HNE aos 21 e diminuição aos 90 dias. Diminuição na expressão do mRNA para CPT1 aos 21, 60 dias. Diminuição na expressão do mRNA para PPARα e aumento na expressão do mRNA para UCP2 aos 21 dias; diminuição na expressão do mRNA para UCP2 ao 60 dias. Alterações morfológicas cardíacas e hepáticas, assim como na ultraestrutura dos cardiomiócitos, em todas as idades, maior conteúdo de glicogênio hepático aos 21 e 90 dias. Concluímos que a hiperalimentação na lactação levou à obesidade, com aumento da oxidação de glicose, alterações no metabolismo energético associadas à diminuição da sensibilidade à insulina, redução da capacidade oxidativa mitocondrial, levando ao desacoplamento e alteração da morfologia e ultraestrutura dos cardiomiócitos do desmame até a idade adulta.