2 resultados para nonlinear error

em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho estima, utilizando dados trimestrais de 1999 a 2011, o impacto dinâmico de um estímulo fiscal no Brasil sobre as principais variáveis macroeconômicas Brasileiras. Na estimativa dos impactos permitiu-se que as expectativas dos agentes econômicas fossem afetadas pela existência e probabilidade de alternância de regimes (foram detectados dois regimes) na política monetária do país. Os parâmetros da regra da política monetária, nos dois regimes detectados, foram estimados através de um modelo - composto apenas pela equação da regra da política monetária - que permite uma mudança de regime Markoviana. Os parâmetros do único regime encontrado para a política fiscal foram estimados por um modelo Vetorial de Correção de Erros (Vector Error Correction Model - VEC), composto apenas pelas variáveis pertencentes à regra da política fiscal. Os parâmetros estimados, para os diversos regimes das políticas monetária e fiscal, foram utilizados como auxiliares na calibragem de um modelo de equilíbrio geral estocástico dinâmico (MEGED), com mudanças de regime, com rigidez nominal de preços e concorrência monopolística (como em Davig e Leeper (2011)). Após a calibragem do MEGED os impactos dinâmicos de um estímulo fiscal foram obtidos através de uma rotina numérica (desenvolvida por Davig e Leeper (2006)) que permite obter o equilíbrio dinâmico do modelo resolvendo um sistema de equações de diferenças de primeira ordem expectacionais dinâmicas não lineares. Obtivemos que a política fiscal foi passiva durante todo o período analisado e que a política monetária foi sempre ativa, porém sendo em determinados momentos menos ativa. Em geral, em ambas as combinações de regimes, um choque não antecipado dos gastos do governo leva ao aumento do hiato do produto, aumento dos juros reais, redução do consumo privado e (em contradição com o resultado convencional) redução da taxa de inflação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com cada vez mais intenso desenvolvimento urbano e industrial, atualmente um desafio fundamental é eliminar ou reduzir o impacto causado pelas emissões de poluentes para a atmosfera. No ano de 2012, o Rio de Janeiro sediou a Rio +20, a Conferência das Nações Unidas sobre Desenvolvimento Sustentável, onde representantes de todo o mundo participaram. Na época, entre outros assuntos foram discutidos a economia verde e o desenvolvimento sustentável. O O3 troposférico apresenta-se como uma variável extremamente importante devido ao seu forte impacto ambiental, e conhecer o comportamento dos parâmetros que afetam a qualidade do ar de uma região, é útil para prever cenários. A química das ciências atmosféricas e meteorologia são altamente não lineares e, assim, as previsões de parâmetros de qualidade do ar são difíceis de serem determinadas. A qualidade do ar depende de emissões, de meteorologia e topografia. Os dados observados foram o dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), óxidos de nitrogênio (NOx), monóxido de carbono (CO), ozônio (O3), velocidade escalar vento (VEV), radiação solar global (RSG), temperatura (TEM), umidade relativa (UR) e foram coletados através da estação móvel de monitoramento da Secretaria do Meio Ambiente (SMAC) do Rio de Janeiro em dois locais na área metropolitana, na Pontifícia Universidade Católica (PUC-Rio) e na Universidade do Estado do Rio de Janeiro (UERJ) no ano de 2011 e 2012. Este estudo teve três objetivos: (1) analisar o comportamento das variáveis, utilizando o método de análise de componentes principais (PCA) de análise exploratória, (2) propor previsões de níveis de O3 a partir de poluentes primários e de fatores meteorológicos, comparando a eficácia dos métodos não lineares, como as redes neurais artificiais (ANN) e regressão por máquina de vetor de suporte (SVM-R), a partir de poluentes primários e de fatores meteorológicos e, finalmente, (3) realizar método de classificação de dados usando a classificação por máquina de vetor suporte (SVM-C). A técnica PCA mostrou que, para conjunto de dados da PUC as variáveis NO, NOx e VEV obtiveram um impacto maior sobre a concentração de O3 e o conjunto de dados da UERJ teve a TEM e a RSG como as variáveis mais importantes. Os resultados das técnicas de regressão não linear ANN e SVM obtidos foram muito próximos e aceitáveis para o conjunto de dados da UERJ apresentando coeficiente de determinação (R2) para a validação, 0,9122 e 0,9152 e Raiz Quadrada do Erro Médio Quadrático (RMECV) 7,66 e 7,85, respectivamente. Quanto aos conjuntos de dados PUC e PUC+UERJ, ambas as técnicas, obtiveram resultados menos satisfatórios. Para estes conjuntos de dados, a SVM mostrou resultados ligeiramente superiores, e PCA, SVM e ANN demonstraram sua robustez apresentando-se como ferramentas úteis para a compreensão, classificação e previsão de cenários da qualidade do ar