2 resultados para mathematical equation correction approach
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
Resumo:
Nesta dissertação consideramos duas abordagens para o tráfego de veículos: a macroscópica e a microscópica. O tráfego é descrito macroscopicamente por três grandezas físicas interligadas entre si, a saber, a velocidade, a densidade e o fluxo, descrevendo leis de conservação do número de veículos. Há vários modelos para o tráfego macroscópico de veículos. A maioria deles trata o tráfego de veículos como um fluido compressível, traduzindo a lei de conservação de massa para os veículos e requer uma lei de estado para o par velocidade-densidade, estabelecendo uma relação entre eles. Já o modelo descrito pela abordagem microscópica considera os veículos como partículas individuais. Consideramos os modelos da classe "car - following". Estes modelos baseiam-se no princípio de que o (n - 1)-ésimo veículo (denominado de "following-car") acelera em função do estímulo que recebe do n-ésimo veículo. Analisamos a equação de conservação do número de veículos em modelos macroscópicos para fluxo de tráfego. Posteriormente resolvemos esta equação através da linearização do modelo, estudando suas retas características e apresentamos a resolução do problema não linear em domínios limitados utilizando o método das características